Article
Keywords:
jet; Weil bundle; Grassmann manifold
Summary:
Given a Weil algebra $A$ and a smooth manifold $M$, we prove that the set $J^AM$ of kernels of regular $A$-points of $M$, $\check{M}^A$, has a differentiable manifold structure and $\check{M}^A\longrightarrow J^AM$ is a principal fiber bundle.
References:
[2] Kolář I., Michor P. W., Slovák J.:
Natural operations in differential geometry. Springer-Verlag, New York, 1993.
MR 1202431 |
Zbl 0782.53013
[3] Muñoz, J, Muriel F. J., and Rodríguez J.: Weil bundles and jet spaces. To appear in Czech. Math. J.
[4] Weil A.:
Théorie des points proches sur les variétés différentiables. Colloque de Géometrie Différentielle, C.N.R.S. (1953), 111–117.
MR 0061455 |
Zbl 0053.24903