Previous |  Up |  Next

Article

References:
[1] C. L. BELNA M. J. EVANS P. D. HUMKE: Most directional cluster sets have common values. Fund. Math. 101 (1978), 1-10. MR 0512239
[2] H. BLUMBERG: A theorem on arbitrary functions of two variables with applications. Fund. Math. 16 (1930), 17-24.
[3] A. M. BRUCKNER: Differentiation of real functions. Lecture notes in Mathematics, No. 659, Springer Verlag, 1978. MR 0507448 | Zbl 0382.26002
[4] A. M. BRUCKNER C. GOFFMAN: The boundary behaviour of real functions in the upper half plane. Rev. Roumaine Math. Pures Appl. 11 (1966), 507-518. MR 0206173
[5] E. P. DOLŽENKO: The boundary properties of arbitrary functions. Russian, Izv. Akad. Nauk SSSR, Ser. Mat. 31 (1967), 3-14. MR 0217297
[6] M. J. EVANS P. D. HUMKE: Directional cluster sets ana essential directional cluster sets of real functions defined in the upper half plane. Rev. Roumaine Math. Pures Appl. 23 (1978), 533-542. MR 0492273
[7] V. JARNÍK: Sur les fonctions de la première classe de Baire. Bull. Internat. Acad. Sci. Boheme 1926.
[8] V. JARNÍK: Sur les fonctions de deux variables reélies. Fund. Math. 27 (1936), 147-150.
[9] J. LUKEŠ L. ZAJÍČEK: When finely continuous functions are of the first class of Baire. Comment. Math. Univ. Carolinae 18 (1977), 647-657. MR 0457646
[10] F. MIGNOT: Controle dans les inéquations variationelles elliptiques. J. Functional Analysis 22 (1976), 130-185. MR 0423155 | Zbl 0364.49003
[11] C. NEUGEBAUER: A theorem on derivatives. Acta Sci. Math. Szeged, 23 (1962), 79-81. MR 0140624 | Zbl 0105.04602
[12] S. SAKS: Theory of the Integral. New York, 1937. Zbl 0017.30004
[13] L. ZAJÍČEK: On cluster sets of arbitrary functions. Fund. Math. 83 (1974), 197-217. MR 0338294
[14] L. ZAJÍČEK: Sets of $\sigma $ -porosity and sets of $\sigma $ -porosity $(q)$. Časopis pěst. mat. 101 (1976), 350-359. MR 0457731 | Zbl 0341.30026
Partner of
EuDML logo