[1] C. L. BELNA M. J. EVANS P. D. HUMKE:
Most directional cluster sets have common values. Fund. Math. 101 (1978), 1-10.
MR 0512239
[2] H. BLUMBERG: A theorem on arbitrary functions of two variables with applications. Fund. Math. 16 (1930), 17-24.
[3] A. M. BRUCKNER:
Differentiation of real functions. Lecture notes in Mathematics, No. 659, Springer Verlag, 1978.
MR 0507448 |
Zbl 0382.26002
[4] A. M. BRUCKNER C. GOFFMAN:
The boundary behaviour of real functions in the upper half plane. Rev. Roumaine Math. Pures Appl. 11 (1966), 507-518.
MR 0206173
[5] E. P. DOLŽENKO:
The boundary properties of arbitrary functions. Russian, Izv. Akad. Nauk SSSR, Ser. Mat. 31 (1967), 3-14.
MR 0217297
[6] M. J. EVANS P. D. HUMKE:
Directional cluster sets ana essential directional cluster sets of real functions defined in the upper half plane. Rev. Roumaine Math. Pures Appl. 23 (1978), 533-542.
MR 0492273
[7] V. JARNÍK: Sur les fonctions de la première classe de Baire. Bull. Internat. Acad. Sci. Boheme 1926.
[8] V. JARNÍK: Sur les fonctions de deux variables reélies. Fund. Math. 27 (1936), 147-150.
[9] J. LUKEŠ L. ZAJÍČEK:
When finely continuous functions are of the first class of Baire. Comment. Math. Univ. Carolinae 18 (1977), 647-657.
MR 0457646
[10] F. MIGNOT:
Controle dans les inéquations variationelles elliptiques. J. Functional Analysis 22 (1976), 130-185.
MR 0423155 |
Zbl 0364.49003
[13] L. ZAJÍČEK:
On cluster sets of arbitrary functions. Fund. Math. 83 (1974), 197-217.
MR 0338294
[14] L. ZAJÍČEK:
Sets of $\sigma $ -porosity and sets of $\sigma $ -porosity $(q)$. Časopis pěst. mat. 101 (1976), 350-359.
MR 0457731 |
Zbl 0341.30026