Previous |  Up |  Next

Article

References:
[1] A. BIELECKI: Une remarque sur la méthode de Banach-Cacciopoli-Tikhonov dans la théorie des équations différentielles ordinaires. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 4 (1956), 261-264. MR 0082073
[2] F. F. BONSALL: Lectures on some fixed point theorems of functional analysis. Tata Institute of Fundamental Research, Bombay 1962. MR 0198173
[3] N. BOURBAKI: Espaces vectoriels topologiques. Paris 1953. Zbl 0050.10703
[4] G. L. CAIN, Jr. M. Z. NASHED: Fixed points and stability for a sum of two operators in locally convex spaces. Pacific J. Math. 39 (1971), 581-592. MR 0322606
[5] R. EDWARDS: Functional analysis. Theory and applications, New York 1965. MR 0221256 | Zbl 0182.16101
[6] C. J. HIMMELBERG:. : Fixed points of compact multifunctions. J. Math. Anal. Appl. 38 (1972), 205-207. MR 0303368 | Zbl 0225.54049
[7] H. H. KELLER: Differential calculus in locally convex spaces. Springer-Verlag, Lecture Notes in Mathematics, Berlin 1974. MR 0440592 | Zbl 0293.58001
[8] M. A. KRASNOSELSKII: Two remarks on the method of succesive approximations. [in Russian], Uspehi Mat. Nauk 10 (1955), 123-127. MR 0068119
[9] S. G. KREIN: Linear differential equations in a Banach space. [in Russian], Moscow 1967. MR 0247239
[10] C. KURATOWSKI: Topologie v. I. Warsaw 1952.
[11] W. R. MELVTN: Some extensions of the Krasnoselskii fixed point theorems. J. Diff. Equat. 11 (1972), 335-348. MR 0301325
[12] V. MILLIONCHIKOV: A contribution to the theory of differential equations $dx/dt = f(x,t)$ in locally convex space. [in Russian], DAN SSSR 131 (1960), 510-513. MR 0118931
[13] M. A. NAIMARK: Normed rings. [in Russian], Moscow 1968. MR 0355602
[14] M. Z. NASHED J. S. W. WONG: Some variants of a fixed point of Krasnoselskii and applications to non-linear integral equations. J. Math. Mech. 18 (1969), 767-777. MR 0238140
[15] W. A. PETRYSHYN: A new fixed point theorem and its applications. Bull. Amer. Math. Soc. 2 (1972), 225-229.
[16] D. PRZEWORSKA, ROLEWICZ: Equations with transformed argument. An algebraic approach. Warsaw 1973. MR 0493449 | Zbl 0271.47008
[17] B. RZEPECKI: On the Banach principle and its application to theory of differential equations. Comment. Math. 19 (1977), 355-363. MR 0478124
[18] V. M. SEHGAL S. P. SINGH: On a fixed point theorem of Krasnoselskii for locally convex spaces. Pacific J. Math. 62 (1976), 561-567. MR 0412911
[19] V. M. SEHGAL S. P. SINGH: A fixed point theorem for the sum of two mappings. Math. Japonica 23 (1978), 71-75. MR 0500289
[20] K. YOSIDA: Functional analysis. Berlin 1965. MR 0180824 | Zbl 0126.11504
Partner of
EuDML logo