Previous |  Up |  Next

Article

References:
[1] D. AMIR J. LINDENSTRAUSS: The structure of weakly compact sets in Banach spaces. Ann. of Math. 88 (1968), 35-46. MR 0228983
[2] C. BESSAGA: Topological equivalence of non-separable reflexive Banach spaces. Ordinal resolutions of identity and monotone bases. Symposium on Infinite dim. Topology, Annals of Math. Studies 69.
[3] H. H. CORSON: The weak topology of a Banach space. Trans. Amer. Math. Soc. 101 (1961), 1-15. MR 0132375 | Zbl 0104.08502
[4] H. H. CORSON J. LINDENSTRAUSS: On function spaces which are Lindelöf spaces. Trans. Amer. Math. Soc. 121 (1966), 476-491. MR 0187213
[5] J. A. DYER: Generalized Markuševič bases. Israel J. Math. 7 (1969), 51-59. MR 0259564
[6] K. JOHN V. ZIZLER: Projections in dual weakly compactly generated Banach spaces. Studia Math. 49 (1973), 41-50. MR 0336295
[7] K. JOHN V. ZIZLER: Smoothness and its equivalents in the class of weakly compactly generated Banach spaces. J. Functional Analysis 15 (1974), 1-11 MR 0417759
[8] K. JOHN V. ZIZLER: Weak compact generating in duality. Studia Math., to appear. MR 0405071
[9] W. B. JOHNSON: Markuševič bases and duality theory. Trans. Amer. Math. Soc. 149 (1970), 171-177. MR 0261312
[10] J. LINDENSTRAUSS: Weakly compact sets - their topological properties and the Banach spaces they generate. Symposium on Infinite Dim. Topology, Annals of Math. Studies 69. Zbl 0232.46019
[11] J. REIF: Subspaces of Banach spaces with projectional basis. Bull. Acad. Pol., to appear.
[12] H. P. ROSENTHAL: The heredity prohlem for weakly compactly generated spaces. Compositio Math. 28 (1974), 83-111. MR 0417762
[13] S. TROJANSKI: On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces. Studia Math. 37 (1971), 173-180. MR 0306873
[14] S. TROJANSKI: On equivalent norms and minimal systems in nonseparable Banach spaces. Studia Math. 43 (1972), 125-138. MR 0324382
Partner of
EuDML logo