Commentationes Mathematicae Universitatis Carolinae

Kamil John; Vaclav Zizler
Some remarks on non-separable Banach spaces with Markusevic basis

Commentationes Mathematicae Universitatis Carolinae, Vol. 15 (1974), No. 4, 679--691

Persistent URL: http://dml.cz/dmlcz/105591

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/105591
http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

15,4 (1974)

SOME REMARKS .ON NON-SEPARABLE BANACH SPACES WITH MARKUSEVIY
BASIS

K. JOHN and V. ZIZLER, Praha

Abstract: If a Banach space X has a MarknSevid basis
{x;} whose coefficient space is nerming, then X has en equi-
valent locally uniformly rotund morm and ix43} contains a
basic subset of the same cardinality. Certain Banach spaces
are observed to be Lindelof in its weak topology.
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J. Lindenstrauss and D. Amir and J. Lindenstrauss have
constructed in weakly compactly generated (WCG) Banach spa-
ces the pro;je'ct‘ional resolution of identity {F,?% ([103,
(1]) which served to extend some results from separable Ba-
nach spaces to such spaces. S. Trojanski ([11]) used this
construction to prove the existence of such {P,} in duals
X* of (WCG) Banach spaces X , where X has a MarkuSe-
vi¥ basis whose coefficient space is X¥* ., Here is the
system 4 P, 3} constructed for spaces with MarkuZevi% basis
whose coefficient space is norming. This implies ([13]) that
such spaces have an equivalent locally uniformly rotund norm
and that the Markudevi& basis 4X;3 contains a basic sub-

set of the same cardinality (cf. Definition 1). If the coe-

- 679 -



fficient space is 4 -norming with respect to some Fréchet
differentiable norm on X , then X is WCG.

In proving the existence of projections 4P} we
follow [1], but the proof of the fundamental lemma 1 [1,
Lemma 3] is given here also in a non-convex situation by a
slightly different method, which does not use the convexity
of Minkowski functional. The needed inequalities are assured
on a dense subset and thus the proof follows by continauity
arguments. This may be used to carry out the Amir-Linden-
strauss construction of continuous projections also in com-
plete metric (non locally convex) linear spaces which are
generated by a weakly compact subset.

Using a theorem of Corson we observe further that WCG
and F ( = with Fréchet differentiable norm) Banach spaces
" are Lindeldf in its weak topology (w-Lindel3f). Corson [31
conjectured that Banach space is w-LindelS8f iff it is ge-
nerated by a weakly compact subset. This proved to be fal-
se because of the Rosenthal ‘s example o‘f WCG space which
is not hereditary WCG [12]. Rosenthal ‘C12]) asks if heredi-
tary WCG spaces are (exactly) the spates which are w-Linde-
15f. THus our result supports this conjecture, because WCG
F spaces are hereditary WCG U7]. For the proof of our re-
sult we use the fact that WCG F spaces have a shrinking
MarkuSeviZ basis (cf. e.g. [71).

If X is & Banach space, Mc X and Y c X* +then
w(X,Y)op M (resp. A M ) denotes the w(X,Y)
closed linear (resp. linear) span of M in X . We put
also M =ar(X,X*)sp M . MarkuBevi’® bagis ( M -ba-
8is) of a Banach space X is a system Kx,",xz )y 4 €13

.
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where ¥, € X, x¥ e X*, .x_’-,"(xé)-d;é_,sﬁ,{x*?-x and AR{xy3
(= the coefficient space) is total on X . Y c X* is

called d”-norming, if d'¢ inflmun(f(x);£e¥,lfls .
1

If ¥ is J -norming for some J > 0 then Y is called
norming. A Banach space X is locally uniformly rotund
(LUR) if, whenever X, ,%x € X, Ix,l=lxl=q,6 tm lIx, +xl=2,
then tm Ix, -xl=0 .

We start with

Lemma 1. Let (N, l«1l) be a normed space, B,c N*
a 4 -norming subspace of N* , Let N =apX where X\{0}
is a linearly independent subset of N and let X be
ar (X, 6) compact.

Then, given a sequence £,, £,, ¢+ in & and a
finite dimensional subspace B < N , there exists a
countable C c X with »p C containing B ,
and a linear operator T :N—> N such that ITI= 41,
TNecwN,8)spC, TK c X for every ze N, Tl =&
for every & € B and T*g£, = £, for every h=1,2,...

Proof. We may suppose that B= s (Bn X) . For
every integer f2 , let 34,, c B Dbe finite sets such that
U3, is dense in B , Similarly let A,, cR™ be
finite sets such that g App s dense in ™ .

Now let us fix arbitrary integers m  and 4 and put
n
(1) HeX =XxXx...xX .

Then for every % € B, , every A e AM and every

% =4,...,f4 we consider the following functions of
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(Zyy.00s 2, ) € H s
n id
Lb'-r&‘a.h%z_bf » Tplle B2y .

ThHese M= wd,B@- ca/wLAM *(1+ p) functions can be

regarded as a function @ : H — ¥ (®" with a ma-

ximal coordinate distance). Using the separability of

$(H) ¢ RM we choose a sequence S= ""5 {"mx‘e},, =
=£(""x f,..., e :)%CH such that $(S) is dense in
) .

Put

C = {m‘ﬂ\x: 3 m,,ﬂ,,zg4, 2,-'0, éz 4’ o..,ﬂb}U(Bﬂx) -

Now, if 4 is integer,ZcX,Bc Z, dim Z/Bam,2Z=Bompiz,,...Zn},

(z,,,...,z,,,)eH , We can choose (xa,:""‘xm) €™™S such that

1
(2) 1§ (X yensy Xp) = B (Zgyueey B < o -
v ' . . .
Let ‘Tz : Z~> C Dbe linear mappings defined by

mp o "s‘:
T,z_ (& +L§4.7L,vz,v=. b‘+‘a.4h4x_& .

Put Ly o= b+, A2 6By, AcApy? and
II= L#Lm' .

If z & L@. then using (2) we have

: miv 1 1
(3 T, ()| = |+ z:a.‘._x_biel,en,z&._z,.,l...iﬂzldrz .
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Similarly

mp _4_
@ I, (Tp" @) - g (20l & 3

for all zeLﬂ, and & = 14,...,~ .
Evidently TMYKXAZ)cX and thus T, ™/(KnA 2)eXKZ

By Tychonoff’s theorem there is a subnet (T;”/Kn Z;g

converging pointwise on K nZ and thus on mn(XnZ)_ 7
in the w (N, Q) topology to T, : — w (N,@)sp C ,

6, is 4-norming on (N, l¢]) or equivalently the
unit ball of (N, le1) is ar (N, Q) closed, or equiva-
lently |.| is lower ar(N, Q) semicontinuous. Let z ¢

’ M 1
€Lg . ThenITzzléwmmq»“lT‘ zl £ lzl+ -

by (3) and by lower w (N,8) semicontinuity of |-l .

Thus, 1T, %14 lz]| on L and from the density of sp L

in Z we have IT;x|l & |x| for every s Z, Similarly,

by (4) and lower a (N, G)semicontinuity of |-l and £, we have

lfu(z) -5 (T,2) = 0 for all ze Z and = 1,2,...

Now as in [1, Lemma 3] the net {T;,} has a a(N,R)
cluster point T , Evidently T has all properties mentio-

ned in our lemma.

Remark. Lemma 1 is listed here in its simplest form
and other variants similarly as in [6] may be proved. Other
w {N, @) lower semicontinuous norms or Minkowski functio-
nals on X or its subspacéa may be given and projections
constructed contractive with respect to them. Some assump-
tions on norm inequalities may be raised. ar(N,R) closure

of any linear independent subset may be preserved.
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Notation. In the sequel we will use the following as-

sumptions and notation:

((x,;,,u:);fvcl? is an M -basis of X with Ix;l=4 for
all Y€l . Weput K= §x,;+eljuidl, NasnX and
ng{d;¢¢15,1f0¢McK then we put M* =
=4} 3%, e M3, if x=x; €K then we put = xf

Lemma 2. X is aw (X,8) compact.

Proof: The ar(X,Q) topology and a (X,snix 3) topo-
logy coincide on X because X is bounded. Let ix;_} be

anet in K and 4 € I.Then aﬁ(x,;d)—-u 0 if 4 44 and thus

%, —» 0 in ar (X,Apix;3) topology.
Yo

Lemmg 3. Let CeX , Then NNar(N,@)anC=NNAR C=ap( .

Proof: It is easy to see that all subspaces of the form
M C are ar(N,@) closed in N .

Lemmg 4. Let JC,.N, 6,X be as in Notation and let
. be 4 -norming on (X, l+}) , Then, given a finite subset
Le X, (QgL) , there exists a countable set C c X
and a linear operator T:N—> wr(N,B)An € = »p C with
iTied, TK c X for all x € N, T& = & for every el
and x*(Tx)=x"(z) for every xeL and zeN .

Proof: With our notation we have on (N, l¢l) exac-
tly the situation of Lemma 1. We also put B = &pLl and

-
£&= v)(; for \x‘;’ sL .,

Lemmg 5. Let N, G,X Vbe as in Lemma 4, #4 an in-
finite cardinal number and I, « K\{03} with cord L = 4 .
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Then there exists a subset Cc X N403 with L e C
cawol C = 4

)

and a projection Ps N—sp N with |P} = 1,
PN =spC, PXcX and X™(Px)= x* (z) for all
zeN and all x*e C* .

Proof: Similarly &s in the proof of Lemma 4 in [1) we
use the transfinite induction on 44 , Assume oo, +As in
[1], we define inductively a sequence of countable sets
Cm = A%pe 3, © XN103 and linear operators T, :
tNe—s N with le|=4,TﬂK cX ,TMN c CM)Tm(xi»i) = “i-’»
and x¥, (Tz) = x*, (z) for 3=0,...,m=41 and 4 =

v a4
= 4,u,m . Pat C=UC; . Let Ps N— N be a w(N,&)
cluster point of the sequence 47T, 3 . Using Lemma 3 we have
spCecPNec ar(N,6)mpC = snC

PN=smC and thus P

’ showing that
is a8 projection. Further, the
inductive proof follows exactly as the proof of Lemma 4 in
[11. The cluster points are here in the ar (N, Q)

topology
and Lemma 3 is used.

Remark. The projection P ' is determined by the pro-

perties: PN = Hpn C and x*(Pz) = x*(z) for xeC
zeN , Indeed, if x € X\ C, then Pz = 0

and

Proposition 1. Let X ,N,@,X be as in Lemma 4.

Let § be the first ordinal of cardinality card K

(= coxd I ) and let fx, ;3 x<§? =X . Then there

exists a "léng sequence” of linear projections {F.; w <

$ <« £§3% of X and subsets CecX satisfying
1P l=4,x,eP, ,Xoif Cppy,cand G =, Cgc Cp

whenever (3 < e, C.: < P:I ’,V‘PG-M is norm dense in

e
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P

o X for every « > @ and P2 X = AR C_ .
Thus by the above remark B Py =F; B = Pj whene-
ver < « . For every x e X and every & > 0 , the set

foe ) 1D (X-Bexl>e} is finite. B % Py ifec .

Proof: Similarly as in the proof of Lemma 6 in [1]
we construct (using Lemmas 3 and 5) such a "sequence" of
projections 4P, w & ec £ §3% of N . Evidently they

can be extended to projections P N—> X with

<
Pyl =4 . The last assertion is proved similarly as Lem-
ma 7 in [1] using equicontinuity of P, ‘s and Lemma 3

follows from [7, Lemma 2] .

Definition 1 (Bessaga). Let § be an ordinal num-
ber. (Orthogonal) projectional basis of type E is a

system of projections {B_; « <« § * such that
M{H?‘\< w,(\%lﬁ),a&mq‘”-z‘)x-4,?,1’8-PB P = Pﬂ

for 3 <o and the function «—> B X is norm conti-

nuous on ordinals for every x € X .,

fx 3 < §3% where x, €(F,, ,-F )X is then
called the basis of X . A system {4z ; c< § 3} of ele-

ments of X is called a basic sequence if it is a basis

of E{q,“i .

Proposition 2. Let (X ,l+1) (X non-separable) have

M -basis 4 (¥,

49 xf)i , whose coefficient space is 1-

norming. Then there is orthogonal basic sequence -(y,,! <
c {x;} with canddq,} = cowd ix,} = dems X .
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Proof: If {B ;cw £ cc £§ % is a system of projec-

tions from Proposition 1, choose n; € (P,  ~F )X N{x. 5% .

Evidently 408, ; @ £ cc € §3 where @=E /Aniy,} is an
orthogonal projectional basis of Afy 14, ¥ (cf. also
[111).

Proposition 3. Let (X, I¢1) be a Banach space
with Fréchet smooth norm. If (X, |:]) has an M -ba-
sis whose coefficient space is 4 -norming, then X is

WCG.

Proof: By Proposition 1, Lemma 3 of [7] and similar-
ly as in the proof of Lemma 4 of [7), X has an M -ba-
sis whose coefficient space is X* and thus X is WCG

by Lemma 2.

Theorem. Let X be a Banach space with an M -basis
whose coefficient space @ is norming. Then X admits
an equivalent LUR norm which is lower aw(X,@) semicon-

tinuous.

Proof: First we introduce an equivalent norm (x| =
=nupnifl(x);£fe6,1£1 £ 43 for which @& is 4 -norm-
ing. Starting with Proposition 1, we proceed exactly as in
the proof of Theorem 1 in [13], p. 177-178. To show that
operators T, : X—> X satisfying (i) - (iii) ( [ Prop.
1, p.1751) exist, we proceed by induction on cardinality
of M -basis, noting that c?¢+,-r‘)x has an M -ba-
sis with norming coefficients.

The one-to-one continuous linear operater of X into

co(T‘) is provided by a theorem of J. Dyer [5].
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Remark. It was shown by J. Lindenstrauss that every .
WCG space has an M -basis. Every separable space has an
M -basis wity norming coefficient space [9]. This, toge-
ther with the Theorem suggest the following questions:
1) Has every WCG space an M -basis with norming co~
efficient space?
2) Does every space with an M -basis admit an equi-

valent LUR norm?

Remgrk. If the WCG space X has an M -basis with
a norming coefficient space, then similarly as in [8, coro-
llary 1 and Lemma 6] we see that X has G&teaux smooth

partitions of unity (subordinated to any open covering).

Now we show that WCG F spaces are w-Lindelof. For this
we recall (cf. [3], p. 2) that a subset A c ¢, (T") is
said to be almost invariant under projections if there is
a collection {I'¢'; Fe« 23 of countable subsets of T
such that each countable subset of I is contained in one

0
of the I'F, I"b'q < 1‘0’a cTe, ... implies thatal:‘ re;

is one of T'6' , and such that A/I'¢ c A for every fe
¢ Z .Here A/Te=4{a/Tg ; a€A? and a/Tg  is the
eiement of ©, (I') which agrees with @ on I, and
which has the value 0 for y e ’'\Ts .

Lemmg 6. Let X be a Banach space with an M -basis
{(x; ,£3) 34 e} whose coefficient space is 4 -norm-
ing and suppose that |f5le 4 . Thus TX = {£;(x); 46T 1 de-
fines a continuous linear mapping of X into ¢, (T) . Let
B be the closed unit ball of X . Then TB is a subset
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of ¢,(T) which is almost invariant under projections.

Proof: .Let 2  be the set of all projections 6 :
+ X—» X with a separable range given by Lemma 5. Then
X = /7& {xy 3 + €Ty } where Tg c T is coun-
table. Evidently the collection {T'¢ ; § € Z 3 has the re-
quired properties. (If I‘gﬂ c FG& € .. ,then 4m¢, = ¢ ex-
ists and Ty =UJy;, . If xeB thenTx/Ty =T6x  for
& € £ , showing that TB/Ty ¢ TB .)

Corellary ( Corson ). Let X be a Banach space with
an M -basis ("‘4,"’4.) whose coefficient space Y:A’Ts{f_-‘?
is norming. Then X is Lindel6f in the ar (X,Y) -topology.
Especially, every space with a shrirking M -basis (i.e.

il = X ™ ) is Lindeldf in the a -topology.

Proof: We may assume that ¥ is 4 -horming. It suf-
fices to prove that B is ar (X,Y) -Lindeldf or
wX,pni£;3) -Lindeldf. Evidently T: X —»> ¢, (I') defined
above is the homeomorphism with respect to w (X, sn{£;3}) -
topology on X and the topology of coordinate convergence
on ¢, (I') . But the latter is kindel3f on every subset al-
most invariant under projections by the theorem of Corsen

[3, Lemma 11.

Remark. Similarly, following Corson and Lindenstrauss,
Theorem 2.4 of [4] still holds if H is a reflexive Ba-
nach space: Let X be a topological space which is a ~conti-
nuous image of a separable metric space, and let AY be
any reflexive Banach space in the weak topology. Then
C(X,H™ ) is Lindeldf in the topology of pointwise con-

vergence.
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