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COMMENTATIONES MATHEMATICAE UNI VERS ITATIS CAROLINAE 

15,4 (1974) 

SOME REMARKS ON NON-SEPARABLE BANACH SPACES WITH MARKUSEVIC 

BASIS 

K. JOHN and V. ZIZLER, Praha 

Abstract: If a Banach space X has a Markusevic* basis 
•ixji whose coefficient spae# is miming, "f&en 3Thas am eqkt-
valent locally uniformly rotund itarm and i<x<i1 certains a 
basic subset of the same cardinality. Certain Banach spaces 
are observed to be Lindelof in its weak topology. 

Key words: MarkuSevifi basis, rotundity, LindelSf space. 

AMS: 46B05, 46B15 Ref. 2. 7.972.22 

J. Lindenstrauss and H. Amir and J. Lindenstrauss have 

constructed in weakly compactly generated (WCG) Banach spa­

ces the progectional resolution of identity it^l ([101, 

til) which served to extend some results from separable Ba­

nach spaces to such spaces. S. Trojanski < [113 ) used this 

construction to prove the existence of such AP^} in duals 

X* of (WCG) Banach spaces X , where X has a ilarkuSe-

vic" basis whose coefficient space is 3C* . Here is the 

system i P^ } constructed for spaces with MarkuSevifi basis 

whose coefficient space is norming. This implies (Cl31) that 

such spaces have an equivalent locally uniformly rotund norm 

and that the MarkuSevid basis 4x^$ contains a basic sub­

set of the same cardinality (cf. Definition 1). If the coe-
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fficient space is A -norming with respect to some Frechet 

different!able norm on X , then X i s WCG. 

In proving the existence of projections < P^ f we 

follow [11, but the proof of the fundamental lemma 1 [ 1 , 

Lemma 31 i s given here also in a non-convex situation by a 

slightly different method, which does not use the convexity 

of Minkowski functional. The needed inequalities atre ©esuxed 

on a dense subset and thus the proof follows by continuity 

arguments. This may be used to carry out the Amir-Linden-

strauss construction of continuous projections also in com­

p lete metric (non local ly convex) linear spaces which are 

generated by a weakly compact subset. 

Using a theorem of Corson we observe further that WCG 

and F ( = with Frechet differentiable norm) Banach spaces 

are Lindelof in i t s weak topology (w-Lindelof). Corson [31 

conjectured that Banach space i s w-LindelSf i f f i t i s ge­

nerated by a weakly compact subset. This proved to be f a l ­

se because of the Rosenthal's example erf WCG space which 

i s not hereditary WCG £121. Rosenthal %L21 asks i f heredi­

tary WCG spaces are (exactly) the spaces which are w-Linde­

lof. Thus our result supports this conjecture, because WCG 

Fspaces are hereditary WCG 173. For the proof of our re­

sult we use the fact that WCG F spaces have a shrinking 

l^rrlca.Seri€ basis (cf. e .g . C73). 

If X i s a Banach space, )k c X and Y c -** then 

mr(XfY}Jbp& Cresp. J»ft U ) denotes the /Mr (X , Y ) 

closed linear (reap, l inear) span of JA in 3C . We put 

aliso Wfi M « mr (X ,X*)Jb^ M. • MarkuSeviS basis C -M -ba­

s i s ) of a Banach space X i s a ayatem 4(.x. , x * ) *, ** * * J 
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wh*rm.tymX9x$ + X*,.x$(x^)m<fytty{x4timX and J5fi<t**t 

(« the coefficient space) i s t o t a l on .X . 7 c X* ±a 

called cT-norming, i f cf£ bwtiwupif (x); £mY, II £ II £ 4 )) 1 
11x11*4 

If Y i s cT-norming for some cT > 0 then y i s called 

norming. A Banach space X i s loca l ly uniformly rotund 

(LUR) if, whenever X^,* e X , llx^H * IUI1 •- 4 , i£w "°W+-* ' * 2 > 

then iim, I K ^ - # II = 0 . 

We s t a r t with 

Lemma 1- Let < H i I • I ) be a normed space, 8 » c F 

a \ -norming subspace of X* * Let K * />fi.X where XMOf 

i s a linearly independent subset of H and l e t X be 

Air (K, ©») compact. 

Then, given a sequence f̂  , f * , # # • in ffi» and a 

f i n i t e dimensional subspace 3 c -M > there exis ts a 

countable C c X witH >bfa» C containing B • 

and a l inear operator T iH—* H such that ITI » 4 9 

TH c 4tr <K , Q, )*f» C , TX c X for every * e fl f T * „ i r 

for every -2r e B and T^f^ » £ * for every Jt, • -1,2,,.' * 

Proof » We may suppose that B ** ^ C B A X ) • For 

every integer /f& , l e t B^, c f i be f i n i t e se t s such that 

U B ^ i s dense in B . Similarly l e t A ^ c ? ! * be 

f i n i t e se ts such that U A ^ ^ , i s dense in JL'*' * 

Now l e t us f ix a rb i t ra ry integers in? and ^ and put 

(1) H mX mXxX >c .»• >c X # 

Then for every Sir c i ^ , every % m Am^ and every 

to> >ss 4,..>M*f*> we consider the following functions of 
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(zA f . . . , z^) s H * 

.J&-+2JU i t j .fVC/r+ .S A. * . ) -

These M ** c.*â L JU# cabot, Am4^ ' (J + jv) functions can be 

•M M 

regarded as a function § t H —*»• 31 ( R with a ma­

ximal coordinate d is tance) . Using the separab i l i ty of 

$(H) c X we choose a sequence S -= m^& i^^u h » 

srtC # >•*•, x ^ / J c J i such tha t f C 5 ; i s dense in 

$CH) . 

Put 

C m. A x> i mf^fZm4f 2 , . . . , £ * 4,...,m,)u(BnX). 

How, i f ^ i s integer fZcX,%c Z9dfaZ/3*f*,Zm3®/>p4z4ll>>..>z/nl > 

i«51l...>a%li>€.H ,«e can choose Cx., . .*> tf^,) c'*f*'<S such that 

1 
(2) !.&<*.,,•»•»*»>- - f C«fi — »*m.)l < „ 

Let T ^ : 2 • G be l inear mappings defined by 

Put L ^ « 4 ^ + ^ a ^ ^ s i r c B ^ t A c A ^ l and 

L « U L . 

If % € L^ then using (2) we have 

(3) l T ^ * ) l « l . f r + f i A . « + 1 . 4 | . f r + S A + * + | + i-l*l+^ . 
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Similarly 

(4) IV^'-^'I^J * 
for a l l u L ^ and M, m 4, ..., <fi> • 

Evidently T^CX A Z) CX and thus T^/CX n Z) e XKnZ
 4 

By Tychonoff's theorem there i s a subnet " ( T . ^ / X n Z\ 
Z ac 

converging pointwise on X n Z and thus on kfiiXnZ)^ % 

in the /urCN,ft) topology to T £ x • <w CN, fl)/*fa, C 

0, is 4-norming on CM, !•!) or equivalently the 

unit ball of (M., !•!) is nirCM, ft) closed, or equiva­

lently !•! is lower /ur C.N, ft) semi continuous. Let * « 

c L 0 . Then IT,*!* Mm, *u* IT**** I * 1*1+ -

by (3) and by lower ,* .*(#, ft) semi continuity of 1*1 * 

Thusf IT., %\6 \%\ on L and from the density of *f*>h 

in Z we have I T z % \ 6 I»I for every % m L . Similarly, 

by (4) and lower Atr (H, ft)semicontinuity of I •! and f^ we have 

li^Cx) -£Jk(Tzz)\ ** Q for all %mZ and Jt,»494„~ • 

Now as in [1, Lemma 3] the net 4T-.,? has a mr(MfGl) 

cluster point T . Evidently T has all properties mentio­

ned in our lemma. 

Remark. Lemma 1 is listed here in its simplest form 

and other variants similarly as in [6] may be proved. Other 

*tt/(K, ft) lower semi continuous norms or Minkowski functio-

nals on X or its subspaces may be given and projections 

constructed contractive with respect to them. Some assump­

tions on norm inequalities may be raised. «cr(Jf,&)' closure 

of any linear independent subset may be preserved. 
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notation,. In the sequel we wi l l use the following as­

sumptions and notation: 

VCx^xJ); « v * I l i s an i t -bas is of X with U ^ l - 4 f or 

a l l i c I . We put K » f * 4 ; * c X } w { 0 t , H» *f*X and 

ft * 5fi 4x$ •, 4 c I § , I f ° + ^ c X then we put J l* * 

« -{x£ j x^ « M J , i f X = X^ € X then we put x * * x * . 

Lemma 2. X i s w(JC,ft) compact. 

Proof: The tw(X)Q) topology and w CX.-fc/ifx^}) topo­

logy coincide on X because X i s bounded. Let ix± } be 

a net in K and -t e I .Then X * ( x ^ ) — • 0 i f 4^$ I and thup 

X. -—* 0 in mr (X}Afiix^i) topology. 

Lemma 3 . Let C c X . Then Nf\Atr(HlQ)^CsHf.v5f* C*»fi,C . 

Proof: I t i s easy to see tha t a l l subspaces of the form 

&h,C are /^(H^ft) closed in H 

Lemma 4. Let X..N.. &,X be as in Notation and l e t 

Qi be 4-norming on (3C, !•) ) • Then, given a f i n i t e subset 

L c K , ( O f L ) , there ex is t s a countable set C c X 

and a l inear operator X i Ji—*> iv (-N,. ft) *t* C as »fiv C with 

I Tl £ 4 f T X c K for a l l X c H /T-fr • J&> for every JrmL 

and x*(Tas) * x * ( « ) for every x c L and * e-K . 

••Iroof: With our notation we have on < H , I * I ) exac­

t l y the s i tuat ion of Lemma i . We also put B » Afa,L and 

£ • s x * for X. « L . 
V .. • • *v "*« , 

Lemma 5. Let j | ^ ©ĵ JJ be as in Lemma 4, M> an in ­

f in i t e cardinal number and V c K M O } ; with coftd L » -4H. . 
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Then there e x i s t s a subset C c X N 4 0 l with X* c C , 

cofcol C •» Ml* and a pro jec t ion P % A—t* -H" with IP] =• 4 , 

PIT. m J*fr C , PX c X and * * ( ? * ; * - x * C » ) for a l l 

x e K and a l l * * « C* . 

Proof; S imi lar ly as in the proof of Lemma 4 i n £1} we 

use the t r a n s f i n i t e induct ion on JM* • Assume ^ » ^ A ,As in 

t l ] , we def ine induct ive ly a sequence of countable s e t s 

C^ a ***u* - l c ^ - ^ 0 $ an<* l i-tear operators T^ \ 

tH—rN with I T ^ U ^ T ^ X c K , V * c C ^ T ^ C x ^ ) . * i 4 

and xf . CT») = *xf. ( * ) for i » 0 , . . . , m . - ' 1 and -I « 

• 4-. . . , m. . Put C » U C ^ . Let P ; N—* .N be a /*/<*,«> 

c l u s t e r point of the sequence - t ^ J . Using Lemma 3 we have 

/>fi-CcP-Hc w ( K., Q.) *f* C * h$> C , showing that 

PX a ^ C and thus P i s a p r o j e c t i o n . Further, the 

induct ive proof fo l lows exact ly as the proof of Lemma 4 in 

[11* The c lus t er po in t s are here i n the <ur(M,ft) topology 

and Lemma 3 i s used . 

Remark. The pro jec t ion P i s determined by the pro­

p e r t i e s : P.H » Atfp. C and * * CP*) m x*C%) for x • C and 

X « H . Indeed , i f % m X \ C . , then P * = 0 . 

Proposit ion 1 . Let X , K , ft, X be as i n Lemma 4 . 

Let | be the f i r s t ord inal o f card ina l i ty cancel X 

( = oojui I ) and l e t 4*^ ; oc -c | } =- X #
4 Then there 

e x i s t s a "ldag sequence" o f l i n e a r project ions 41^$ «-> .£ 

^ oc ^ | } of X and subsets C^ c X s a t i s f y i n g 

whenever ( i < * . C^ c ? X } y *«*-v4 i s n o r m &«*-s« i& 
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P^ X for every oc, > CJ and P^ X » Mp, C^ . 

Thus by the above remark P^ P^ « P^ P* «• P^ whene­

ver /5 < «c . For every x € X and every e > 0 f the set 

•tec j * **•* * "* *«c * ' > e * i s f i n i t e * 3* * p/5 i f oc 4. /S . 

Proof: Similarly as in the proof of Lemma 6 in til 

we construct (using Lemmas 3 and 5) such a "sequence" of 

projections 4V^ \ & 6 o& * § $ of if . Evidently they 

can be extended to projections P^ s tf—> X with 

IP^l a <f • The l as t asser t ion i s proved similarly as Lem­

ma 7 in til using equicontinuity of P ^ *s and Lemma 3 

follows from [7* Lemma 2} . 

Definition 1 (Bessaga)* Let £ be an ordinal num­

ber. (Orthogonal) projectional basis of type f i s a 

system of projections {P^ ; «c £ £ * such that 

^^ !P r f l<« , (>?^ l = 4),el*w,CPe+4-P<)X-'l,P<P<J-P(, P., -. P„ 

for p *s ec and the function ©c —a* 3^ * i s norm cont i ­

nuous en ordinals for every .x c X • 

"***> * -* ? ? where x ^ 6 CP^^^ - P ^ ) ^ i s then 

called the basis of X • A system - t ^ j oc < J } of e le ­

ments of X i s called a basic sequence i f i t i s a basis 

of 5fv < ^ ! . 

Proposition 2» Let CX , 1 • I ) (X non-separable) have 

J4 -basis «iC#^ t * £ ) ? } whose coefficient space i s 4 -

norming. Shen there i s orthogonal basic sequence Aty*$ c 

c i x • 1 with ccufcd -C » ^ 5 m cafcoL ix. 5 =- cfc&na X . 
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Proof; If 4P^ \ co 6 oc •£ f J is a system of projec­

tions from Proposition 1, choose ^ c CP^.^--P^JX fKx^J -

Evidently ih^ied&ac&fl where O^sf^/JSfiif^i is an 

orthogonal projectional basis of -Sfi'f^J (cf* also 

[11]). 

Proposition 3. Let ( X , I • I ) be a Banach space 

with Fr£chet smooth norm. If C X , I • I ) has an M -ba­

sis whose coefficient space is A -norming, then X is 

WCG. 

Proof: By Proposition 1, Lemma 3 of C73 and similar­

ly as in the proof of Lemma 4 of 173, X has an id -ba­

sis whose coefficient space is X * and thus X is WCG 

by Lemma 2. 

Theorem. Let X be a Banach space with an JA -basis 

whose coefficient space Q, is norming. Then X admits 

an equivalent LUR norm which is lower n«rCX,fll) semicon-

tinuous • 

Proof: First we introduce an equivalent norm 1x1* 

= *u-fi,4£Cx);£c 0», l£ I £ 4 I for which ft is 4 -norm­

ing. Starting with Proposition 1, we proceed exactly as in 

the proof of Theorem 1 in £133, p. 177-178. To show that 

operators T^ s X—** X satisfying (i) - (iii) ( rProp. 

1, p. 175 3 ) exist, we proceed by induction on cardinality 

of .14 -basis, noting that CI^ ̂ -^C)X has an M -ba­

sis with norming coefficients* 

The one-to-one continuous linear operator of X into 

C 0 C T ) is provided by a theorem of J* Dyer 15J• 
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Remark« It was shown by J. Lindenstrauss that every 

WCG space has an M -basis* Every separable space has an 

M -basis with norming coefficient space £9]# This, toge­

ther with the Theorem suggest the following questions: 

1) Has every WCG space an M -basis with norming co­

efficient space? 

2) Does every space with an M -basis admit an equi­

valent LI3R norm? 

Remark* If the WCG space X has an M -basis with 

a norming coefficient space, then similarly as in £8, coro­

llary 1 and Lemma 61 we see that X has Gateaux smooth 

partitions of unity (subordinated to any open covering). 

How we show that WCG F spaces are w-Lindelof • For this 

we recall (cf* £31, p* 2) that a subset A c c0 (T) i s 

said to be almost invariant under projections i f there i s 

a collection { T€ $ C e S i of countable subsets of T 

such that each countable subset of T i s contained in one 

of the W, T€A c rerfl c T*t . . . implies that^Uj r r . 

i s one of T& y and such that A / T0 c A for every 6f m 

e 2 • Here A / T 0 m 4o*/Tf j cu m A } and ou/T# i s the 

element of e 0 (T) which agrees with *, on IL and 

which has the value 0 for y € T \ T^ 

Lemma 6. Let X be a Banach space with an id -basis 

4($t» )£%} % 4/ € T f whose coefficient space i s 4 -norm­

ing and suppose that \t^\ m 4 . Tarns Tx -.-ff^Cx)} I m T ? de-

f ines a continuous linear mapping of X into e e CD . Let 

B be the closed unit ball of X . Then TB i s a subset 
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of e 0 C r ) which i s almost invariant under project ions. 

Proof: Let 2£ be the se t of a l l projections & % 

. X—* X with a separable range given by Lemma 5. Then 

#X m £ji "*»*4, » * *• *V ' where ^ c T i s coun­

t a b l e . Evidently the collection iTg \ G c S i has the re ­

quired proper t ies . (If T* c IV c ... , then &m>6^« tf ex­

i s t s and T^ mUT$. . If * * B then TK /JV • T6T.X for 

6 ^ e 2 | , showing that TB/ IV c TS , ) 

Corollary ( Corson ) . Let X be a Banach space with 

an JA -bas i s dx^ , f̂  ) whose coefficient space y»/Sji<f^| 

i s norming. Then X i s LindelSf in the mr(X^y) -topology. 

Especia l ly , every space with a shrinking .M -basis ( i . e . 

Sfi-Cf^l .=. X * ) i s Lindelof in the nr-topology. 

Proof: We may assume that y i s 4 -norming. I t suf­

f i ce s t o prove that B i s mrCX,y) -Lindelof or 

i i rCX,*^*^!) -Lindelof. Evidently T s X — * c 0 C D defined 

above i s the homeomorphism with respect to wCX, *Q,A£±}) -

topology on X and the topology of coordinate convergence 

on c0 C r ) . But the l a t t e r i s Lindelof on every subset a l ­

most invar iant under projections by the theorem of Corson 

[ 3 , Lemma 1 ] . 

Remark. Similarly, following Corson and Lindenstrauss, 

Theorem 2.4 of f4] s t i l l holds i f X i s a re£I#xiv» Ba­

nach space: Let X be a topological space which i s a conti­

nuous image of a separable metric space, and l e t E ^ be 

any re f lex ive Banach space in the weak topology. Then 

C C X , H ' * r ) i s Lindelof in the topology of pointwise con­

vergence. 
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