[1] Blum H.: Asymptotic Error Expansion and Defect Correction in the Finite Element Method. Habilitationsschrift, Universität Heidelberg, 1991.
[2] Brezzi F., and J. Pitkäranta:
On the stabilization of finite element approximations of the Stokes equations. In: Efficient Solution of Elliptic Systems (W. Hackbush, ed.), Vieweg, Braunschweig, 1984.
MR 0804083
[3] Bristeau M. O., Glowinski R., and J. Periaux:
Numerical methods for the Navier-Stokes equations: Applications to the simulation of compressible and incompressible viscous flows. In Computer Physics Report, Research Report UH/MD-4, University of Houston, 1987.
MR 0913308
[4] Chorin A. J.:
Numerical solution of the Navier-Stokes equations. Math. Соmр. 22 (1968), 745-762.
MR 0242392 |
Zbl 0198.50103
[5] Devulder C., Marion M., and E. S.Titi:
On the rate of convergence of the nonlinear Galerkin methods. to appear in Math. Соmр..
MR 1160273
[6] Foias C., Manley О., and R. Теmam:
Modelling of the interaction of small and large eddies in two dimensional turbulent flows. $M^2$ AN 22 (1988), 93-114.
MR 0934703
[7] Girault V., and P. A. Raviart:
Finite Element Methods for Navier-Stokes Equations. Springer, Berlin-Heidelberg, 1986.
MR 0851383
[8] Gresho P. M., and S. T. Chan:
On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix Part 1: Theory, Part 2: Implementation. Int. J. Numer. Meth. in Fluids 11 (1990), 587-620, 621-659.
DOI 10.1002/fld.1650110509 |
MR 1074826
[10] Harig J.: A 3-d finite element upwind approximation of the stationary Navier Stokes equations. IWR-Report, Universität Heidelberg, 1991.
[12] Heywood J .G., R. Rannacher:
Finite element approximation of the nonstationary Navier-Stokes problem. Part 1: regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal 19 (1982), 275-311
DOI 10.1137/0719018 |
MR 0650052
[12b] Heywood J. G., R. Rannacher:
Finite element approximation of the nonstationary Navier-Stokes problem. Part 2: Stability of solutions and error estimates uniform in time. ibidem 23, (1986), 750-777
MR 0849281
[12c] Heywood J.G., R. Rannacher:
Finite element approximation of the nonstationary Navier-Stokes problem. Part 3: Smoothing property and higher order error estimates for spatial discretization. ibidem 25 (1988), 489-512
MR 0942204
[12d] Heywood J.G., R. Rannacher:
Finite element approximation of the nonstationary Navier-Stokes problem. Part 4: error analysis for second-order time discretization. ibidem 27 (1990), 353-384.
MR 1043610
[13] Heywood J. G., Rannacher R., and S.Turek:
Artifical boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Universität Heidelberg, April 1992, Preprint.
MR 1380844
[14] Heywood J. G., R. Rannacher:
On the question of turbulence modeling by approximate inertial manifolds and the nonlinear Galerkin method. Universität Heidelberg, May 1992, Preprint.
MR 1249035
[15] Hughes T. J. R., Franca L. P., and M. Balestra:
A new finite element formulation for computational fluid mechanics: V. Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommoding equal order interpolation. Соmр. Meth. Appl. Mech. Eng. 59 (1986), 85-99.
DOI 10.1016/0045-7825(86)90025-3 |
MR 0868143
[16] Kracmar S., and J. Neustupa: Global existence of weak solutions of a nonstationary variational inequality of the Navier-Stokes type with mixed boundary conditions. Dept. of Techn. Math., Czech Techn. Univ, Praha, 1992, Preprint.
[18] Prohl A., and R. Rannacher: On some pseudo-compressibility methods for the Navier-Stokes equations. in preparation.
[19] Rannacher R.:
Numerical analysis of nonstationary fluid flow (a survey). In: Applications of Mathematics in Industry and Technology (V. C. Boffi and H. Neunzert, eds.), Teubner, Stuttgart, 1989, pp. 34-53.
MR 1079942
[20] Rannacher R.: On Chorin's projection method for the incompressible Navier-Stokes equations. Springer, (R. Rautmann, et.al., eds.), Proc. Oberwolfach Conf., 19.-23. 8. 1991.
[22] Shen J.:
On error estimates of projection methods for the Navier-Stokes equations: First order schemes. SIAM J. Numer. Anal. (1991).
MR 1149084
[23] Shen J.: On error estimates of higher order projection and penalty-projection methods for Navier-Stokes equations. Dept. of Math., Indiana University, 1992, Preprint.
[24] Turek S.:
Tools for simulating nonstationary incompressible flow via discretely divergence-free finite element models. Universität Heidelberg, May 1992, Preprint.
MR 1255036