[1] Branin F.H.:
A widely convergent method for finding multiple solutions of simultaneous non-linear equations. IBM J. Res. Develop. (1972), 504-522.
DOI 10.1147/rd.165.0504 |
MR 0418449
[2] Golubitski M., Schaeffer D.: Singularities and Groups in Bifurcation Theory Vol. 1. Springer Verlag, New York, 1985.
[3] Griewank A., Reddien G. W.:
Characterisation and computation of generalised turning points. SIAM J. Numer. Anal. 21 (1984), 176-185.
DOI 10.1137/0721012 |
MR 0731221
[4] Guckenheimer J., Holmes P.:
Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields. Appl. Math. Sci. 42, Springer Verlag, New York, 1983.
DOI 10.1007/978-1-4612-1140-2 |
MR 0709768
[5] Janovský V., Seige V.: Qualitative analysis of Newton iterations for imperfect bifuracation singularities, I. A case study. submitted to SIAM J. Numer. Anal..
[6] Jepson A.D., Spence A.:
Singular points and their computation. In: Numerical Methods for Bifurcation Problems (Küpper T., Mittelmann H. D., Weber H., eds.), vol. ISNM 70, Birkhäuser Verlag, Basel, 1984, pp. 502-514.
MR 0821051 |
Zbl 0579.65048
[8] Jongen H. Th., Jonker P., Twilt F.:
A note on Branin's method for finding the critical points of smooth functions. In: Parameteric Optimization and Related Topics (Guddat J., Jongen H.Th., Kummer B., Nožička F., eds.), Akademie Verlag, Berlin, 1987, pp. 196-208.
MR 0909730 |
Zbl 0625.65067
[9] Keller H.В.:
Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Applications of Bifurcation Theory (Rabinowitz P.H. ed.), Academic Press, New York, 1977, pp. 359-384.
MR 0455353 |
Zbl 0581.65043
[10] Kubíček M., Marek M.: Evaluation of turning and bifurcation points for algebraic and nonlinear boundary value problems. Appl. Math. Соmр. 5 (1979), 106-121.
[11] Kubíček M., Marek M.:
Computational Methods in Bifurcation Theory and Dissipative Structures. Springer Verlag, New York, 1983.
MR 0719370
[12] Melhem R.G., Rheinbold W. C.:
A comparison of methods for determining turning points of nonlinear equations. Computing 29 (1982), 201-226.
DOI 10.1007/BF02241698 |
MR 0680470
[13] Peitgen H.O., Prüfer M.:
Global aspects of Newton's method for nonlinear boundary value problems. In: Numerical Methods for Bifurcation Problems (Küpper T., Mittelmann H. D., Weber H., eds.), vol. ISNM 70, Birkhäuser Verlag, Basel, 1984, pp. 352-368.
MR 0821041 |
Zbl 0539.65059
[14] Pönisch G., Schwetlick H.:
Computing turning points of curves implicitly defined by nonlinear equations depending on a parameter. Computing 26 (1981), 107-121.
DOI 10.1007/BF02241778 |
MR 0619933
[15] Raschman R., Schreiber I., Marek M.:
Periodic and aperiodic regimes in linear and cyclic arrays of coupled reaction diffusion cells. In: Lect. in Appl. Math. Vol. 24, pp. 61-100 (1986), AMS, Providence, RI.
MR 0840077