Previous |  Up |  Next

Article

Title: On the existence of chaotic behaviour of diffeomorphisms (English)
Author: Fečkan, Michal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 2
Year: 1993
Pages: 101-122
Summary lang: English
.
Category: math
.
Summary: For several specific mappings we show their chaotic behaviour by detecting the existence of their transversal homoclinic points. Our approach has an analytical feature based on the method of Lyapunov-Schmidt. (English)
Keyword: bifurcations
Keyword: homoclinic orbits
Keyword: chaotic behaviour
MSC: 34C23
MSC: 37G99
MSC: 58F08
MSC: 58F14
MSC: 58F15
MSC: 58f30
idZBL: Zbl 0789.58056
idMR: MR1202747
DOI: 10.21136/AM.1993.104538
.
Date available: 2008-05-20T18:45:08Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104538
.
Reference: [1] K. R. Meyer & C. R. Sell: Melnikov transforms, Bernoulli bundles, and almost periodic perturbations.Trans. Amer. Math. Soc. 314 (1) (1989), 63-105. MR 0954601
Reference: [2] K. J. Palmer: Exponential dichotomies, the shadowing lemma and transversal homoclinic points.Dynamics Reported 1 (1988), 265-306. Zbl 0676.58025, MR 0945967, 10.1007/978-3-322-96656-8_5
Reference: [3] K. J. Palmer: Exponential dichotomies and transversal homoclinic points.J. Diff. Equations 55 (1984), 225-256. Zbl 0508.58035, MR 0764125, 10.1016/0022-0396(84)90082-2
Reference: [4] S. N. Chow, J . K. Hale & J. Mallet-Paret: An example of bifurcation to homoclinic orbits.J. Diff. Equations 37 (1980), 351-373. MR 0589997, 10.1016/0022-0396(80)90104-7
Reference: [5] M. Fečkan: Bifurcations of heteroclinic orbits for diffeomorfisms.Aplikace Matematiky 36 (1991), 355-367. MR 1125637
Reference: [6] S. Smale: Diffeomorphisms with infinitely many periodic points.in Differential and Combinatorical Topology, Princeton Univ. Press, New Jersey, 1963, pp. 63-80. MR 0182020
Reference: [7] C. Pugh M. Shub & M. W. Hirsch: Invariant Manifolds.Lec. Not. Math. 583, Springer- -Verlag, New York, 1977. MR 0501173
Reference: [8] S. Wiggins: Global Bifurcations and Chaos.Appl. Math. Sci. 73, Springer- Verlag, New York, 1988. Zbl 0661.58001, MR 0956468, 10.1007/978-1-4612-1042-9
Reference: [9] D. Henry: Geometric Theory of Semilinear Parabolic Equations.Lec. Not. Math. 840, Springer- Verlag, New York, 1981. Zbl 0456.35001, MR 0610244, 10.1007/BFb0089647
Reference: [10] M. W. Hirsh & S. Smale: Differential Equations, Dynamical Systems, and Linear Algebra.Academic Press, New York, 1974. MR 0486784
Reference: [11] M. L. Glasser V. G. Papageoriou & T. C. Bountis: Melnikov's function for two-dimensional mappings.SIAM J. Appl. Math. 49 (1989), 692-703. MR 0997915, 10.1137/0149040
Reference: [12] M. Medveď: Dynamical Systems.Veda, Bratislava, 1988. (In Slovak.) MR 0982929
.

Files

Files Size Format View
AplMat_38-1993-2_2.pdf 1.879Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo