Previous |  Up |  Next

Article

Keywords:
bifurcations; homoclinic orbits; chaotic behaviour
Summary:
For several specific mappings we show their chaotic behaviour by detecting the existence of their transversal homoclinic points. Our approach has an analytical feature based on the method of Lyapunov-Schmidt.
References:
[1] K. R. Meyer & C. R. Sell: Melnikov transforms, Bernoulli bundles, and almost periodic perturbations. Trans. Amer. Math. Soc. 314 (1) (1989), 63-105. MR 0954601
[2] K. J. Palmer: Exponential dichotomies, the shadowing lemma and transversal homoclinic points. Dynamics Reported 1 (1988), 265-306. DOI 10.1007/978-3-322-96656-8_5 | MR 0945967 | Zbl 0676.58025
[3] K. J. Palmer: Exponential dichotomies and transversal homoclinic points. J. Diff. Equations 55 (1984), 225-256. DOI 10.1016/0022-0396(84)90082-2 | MR 0764125 | Zbl 0508.58035
[4] S. N. Chow, J . K. Hale & J. Mallet-Paret: An example of bifurcation to homoclinic orbits. J. Diff. Equations 37 (1980), 351-373. DOI 10.1016/0022-0396(80)90104-7 | MR 0589997
[5] M. Fečkan: Bifurcations of heteroclinic orbits for diffeomorfisms. Aplikace Matematiky 36 (1991), 355-367. MR 1125637
[6] S. Smale: Diffeomorphisms with infinitely many periodic points. in Differential and Combinatorical Topology, Princeton Univ. Press, New Jersey, 1963, pp. 63-80. MR 0182020
[7] C. Pugh M. Shub & M. W. Hirsch: Invariant Manifolds. Lec. Not. Math. 583, Springer- -Verlag, New York, 1977. MR 0501173
[8] S. Wiggins: Global Bifurcations and Chaos. Appl. Math. Sci. 73, Springer- Verlag, New York, 1988. DOI 10.1007/978-1-4612-1042-9 | MR 0956468 | Zbl 0661.58001
[9] D. Henry: Geometric Theory of Semilinear Parabolic Equations. Lec. Not. Math. 840, Springer- Verlag, New York, 1981. DOI 10.1007/BFb0089647 | MR 0610244 | Zbl 0456.35001
[10] M. W. Hirsh & S. Smale: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, New York, 1974. MR 0486784
[11] M. L. Glasser V. G. Papageoriou & T. C. Bountis: Melnikov's function for two-dimensional mappings. SIAM J. Appl. Math. 49 (1989), 692-703. DOI 10.1137/0149040 | MR 0997915
[12] M. Medveď: Dynamical Systems. Veda, Bratislava, 1988. (In Slovak.) MR 0982929
Partner of
EuDML logo