Article
MSC:
34B15,
35B32,
35J65,
37G99,
58E07,
58F14,
73C50,
73H05,
73K10,
74G60,
74K20 |
MR 0990299 |
Zbl 0682.73036 | DOI:
10.21136/AM.1989.104340
Keywords:
Fredholm operator; static equilibrium; plate of constant thickness; Fredholm map of index zero; singular point; rotationally symmetric buckled states; von Kármán plate equations; operator equation; proper Sobolev space; local bifurcation behavior; nodal properties
Summary:
This paper deals with the exact number of solutions of von Kármán equations for a rotationally symmetric buckling of a thin elastic plate. The plate of constant thickness is in static equilibrium under a uniform compressive thrust applied along its edge in the plane of the plate. The theory of M. G. Crandall, P. H. Rabinowitz [4], is used and the theory of M. S. Berger [1], [3] and M. S. Berger and P. C. Fife [2] is adapted. This work is a part of [6].
References:
[2] M. S. Berger P. C. Fife:
Von Kármán's Equations and the Buckling of a Thin Elastic Plate, II Plate with General Edge Conditions. Comm. on Pure and Appl. Math., vol. XXI, 1968, 227-241.
MR 0229978
[6] Ľ. Marko: Buckled States of Circular Plates. thesis, 1985 (Slovak).
[7] L. Nirenberg:
Topics in Nonlinear Functional Analysis. Russian translation, Mir, Moscow 1977.
MR 0488104 |
Zbl 0426.47034
[8] A. S. Voľmir: Elastic Plates and Shells. (Russian). GITTL, Moscow 1956.
[9] J. H. Wolkowisky:
Existence of Buckled States of Circular Plates. Comm. on Pure and Appl. Math. vol. XX, 1967, 549-560.
MR 0213087 |
Zbl 0168.45206