Article
Keywords:
van Roosbroeck's equation; steady-state carrier distribution; semiconductor devices; existence; van Roosbroeck's system; transport of mobile charge carriers; spatially homogeneous semiconductor devices; Fermi-Dirac statistics; Schauder's fixed point theorem; unique steady- state
Summary:
The author proves the existence of solution of Van Roosbroeck's system of partial differential equations from the theory of semiconductors. His results generalize those of Mock, Gajewski and Seidman.
References:
[1] J. L. Blue C. L. Wilson:
Two-dimensional analysis of semiconductor devices using general-purpose interactive PDE software. IEEE Trans. Electron Devices ED-30 (1983), 1056-1070.
DOI 10.1109/T-ED.1983.21260
[2] V. L. Bonč-Bruevich S. G. Kalašnikov: Halbleiterphysik. Berlin 1982.
[3] V. L. Bonč-Bruevich I. P. Zvjagin A. G. Mironov: Spatial electrical instability in semiconductors. (Russian). Moscow 1972.
[4] H. Gajewski:
On the existence of steady-state carrier distributions in semiconductors. In: Probleme und Methoden der Mathematischen Physik. Teubner-Texte zur Mathematik 63 (1984), 76-82.
MR 0781760 |
Zbl 0562.35022
[5] H. Gajewski K. Gröger K. Zacharias:
Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Berlin 1974.
MR 0636412
[6] D. Gilbarg N. S. Trudinger:
Elliptic partial differential equations of second order. Berlin- Heidelberg-New York 1977.
MR 0473443
[7] P. Grisvard:
Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain. In: Numerical solution of partial differential equations III (1976), 207-274.
MR 0466912 |
Zbl 0361.35022
[8] M. S. Mock:
On equations describing steady-state carrier distributions in semiconductor devices. Comm. Pure Appl. Math. 25 (1972), 781-792.
DOI 10.1002/cpa.3160250606 |
MR 0323233
[11] S. Selberherr: Analysis and simulation of semiconductor devices. Wien-New York 1984.