Previous |  Up |  Next

Article

Keywords:
backward-differentiation-formula method; Volterra integro-differential equations; theta method; test equation; stability; linear multistep methods; reducible quadrature formulas; linear difference equation; Adams-Moulton methods; stability of numerical solution
Summary:
Stability analysis for numerical solutions of Voltera integro-differential equations based on linear multistep methods combined with reducible quadrature rules is presented. The results given are based on the test equation $y'(t)=\gamma y(t) + \int^t_0(\lambda + \mu t + vs) y(s) ds$ and absolute stability is deffined in terms of the real parameters $\gamma, \lambda, \mu$ and $v$. Sufficient conditions are illustrated for $(0;0)$ - methods and for combinations of Adams-Moulton and backward differentiation methods.
References:
[1] С. T. H. Baker A. Makroglou E. Short: Regions of stability in the numerical treatment of Volterra integro-differential equations. SIAM J. Numer. Anal., Vol. 16, No. 6, December, 1979. MR 0551314
[2] V. L. Bakke Z. Jackiewicz: Stability of reducible quadrature methods for Volterra integral equations of the second kind. Numer. Math. 47 (1985), 159-173. DOI 10.1007/BF01389707 | MR 0799682
[3] V. L. Bakke Z. Jackiewicz: Boundedness of solutions of difference equations and application to numerical solutions of Volterra integral equations of the second kind. J. Math. Anal. Appl., 115 (1986), 592-605. DOI 10.1016/0022-247X(86)90018-1 | MR 0836249
[4] H. Brunner: A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations. J. Comput. App. Math., Vol. 8, No. 3, 1982. MR 0682889 | Zbl 0485.65087
[5] H. Brunner J. D. Lambert: Stability of numerical methods for Volterra integro-differential equations. Computing 12, 75-89 (1974). DOI 10.1007/BF02239501 | MR 0418490
[6] C. J. Gladwin R. Jeltsch: Stability of quadrature rule methods for first kind Volterra integral equations. BIT 14, 144-151 (1974). DOI 10.1007/BF01932943 | MR 0502108
[7] P. Linz: Linear multistep methods for Volterra integro-differential equations. J. Assoc. Comput. Mach., 16 (1969), 295-301. DOI 10.1145/321510.321521 | MR 0239786 | Zbl 0183.45002
[8] J. Matthys: A-stable linear multistep methods for Volterra integro-differential equations. Numer. Math. 27, 85-94 (1976). DOI 10.1007/BF01399087 | MR 0436638 | Zbl 0319.65072
[9] D. Sanchez: A short note on asymptotic estimates of stability regions for a certain class of Volterra integro-differential equations. Manuscript, Department of Mathematics and Statistics, University of New Mexico, May, 1984.
[10] L. M. Milne-Thompson: The calculus of finite differences. MacMillan& Co., London, 1933.
[H] P. H. M. Wolkenfelt: The construction of reducible quadrature rules for Volterra integral and integro-differential equations. IMA Journal of Numerical Analysis, 2, 131-152 (1982). DOI 10.1093/imanum/2.2.131 | MR 0668589 | Zbl 0481.65084
[12] P. H. M. Wolkenfelt: On the numerical stability of reducible quadrature methods for second kind Volterra integral equations. Z. Angew. Math. Mech., 61, 399-401 (1981). DOI 10.1002/zamm.19810610808 | MR 0638029 | Zbl 0466.65073
Partner of
EuDML logo