[1] M. S. Bazaraa C. M. Shetty:
Nonlinear programming. Theory and algorithms. New York: Wiley 1979.
MR 0533477
[2] C. Charalambous J. W. Bandler: Nonlinear minimax optimization as a sequence of least p-th optimization with finite values of p. Faculty Engn., McMaster University, Hamilton, Ontario, Canada, Kept. SOC-3, 1973.
[3] C. Charalambous:
Acceleration of the least p-th algorithm for minimax optimization with engineering applications. Math. Programming 17, 270-297, (1979).
DOI 10.1007/BF01588251 |
MR 0550846
[4] V. F. Demyanov V. N. Malozemov:
Introduction to minimax. Chap. 3, § 5. New York: Wiley 1974.
MR 0475823
[5] D. Goldfarb:
Extension of Davidon's variable metric method to maximization under linear inequality and equality constraints. SIAM J. Appl. Math. 17, 739-764, (1969).
DOI 10.1137/0117067 |
MR 0290799 |
Zbl 0185.42602
[6] D. Goldfarb A. U. Idnani: A numerically stable dual method for solving strictly convex quadratic programs. The City College of New York, Dept. of Computer Sci., Rept. 81- 102, (1981).
[8] S. P. Han:
Variable metric methods for minimizing a class of nondifferentiable functions. Math. Programming 20, 1 - 13, (1981).
MR 0594019 |
Zbl 0441.90095
[9] L. Lukšan:
Variable metric methods for linearly constrained nonlinear minimax approximation. Computing 30, 315-334, (1983).
DOI 10.1007/BF02242138 |
MR 0706672
[11] M. J. D. Powell:
A fast algorithm for nonlinearly constrained optimization calculations. In "Numerical analysis, Dundes 1977", (G. A. Watson, ed.), Lecture Notes in Mathematics 630, Berlin: Springer-Verlag 1978.
MR 0483447