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31 (1986) A P LI K AC E M AT E M ATI KY No. 5, 379-395 

DUAL METHOD FOR SOLVING A SPECIAL PROBLEM 
OF QUADRATIC PROGRAMMING AS A SUBPROBLEM 

AT NONLINEAR MINIMAX APPROXIMATION 

LADISLAV L U K S A N 

(Received June 26, 1985) 

Summary. The paper describes the dual method for solving a special problem of quadratic 
programming as a subproblem at nonlinear mmimax approximation. Two cases are analyzed 
in detail, differring in linear dependence of gradients of the active functions. The complete 
algorithm of the dual method is presented and its finite step convergence is proved. 

Keywords: Nonlinear mmimax approximation, quadratic programming, dual method, algo­
rithm. 

AMS Classification: 65K05. 

1. INTRODUCTION 

This papers concerns a special problem of quadratic programming which occurs 
as a subproblem at nonlinear minimax approximation, where a point x* e Rn is 
sought such that 

(1.1) F(x*) = min (max /£(JC)) 
xeRn ieM 

where ft(x), i e M are real-valued functions defined in the n-dimensional vector 
space Rtl, with continuous second-order derivatives, and M = {1, ..., m). Recently 
the problem (1.1) has been attracting considerable attention. To solve this problem, 
several approaches have been developed, especially the least p-th approximation 
methods [2], [3], steepest descent method [4], variable metric methods making use 
of properties of the generalized differential [9], recursive linear programming methods 
[10], [7], recursive quadratic programming methods [8]. 

The methods of recursive quadratic programming for solving the problems of 
minimax approximation were developed by analogy with their original application 
in the field of nonlinear programming. The problem (1.1) can be transformed into 
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the equivalent problem of nonlinear programming, where we seek a pair (x*, z*) e 
e N„+i such that 

(1.2) z* = min z , 
(x,z)eJVn +i 

where 

Nn+1 = {(x,z)eRn + 1:fi(x) ^z,ieM) . 

Applying the method of recursive quadratic programming [11] to the problem (1.2) 
we obtain one of the methods described in [8]. This method can be described roughly 
in the following way. 

Step 1. We choose an initial point xe Rn and an initial symmetric positive definite 
matrix G. We computef = ft(x), ie M, at = g*(x), i e M and F = F(x) = maxf(x) 

ieM 

(g,(x) is the value of the gradient of f(x) at the point x e Rn). 

Step 2. We find the pair (s, z)eRn+1 which is the solution of the quadratic 
programming problem (1.3). 

Step 3. If ||s|| = 8 where 8 is a small enough positive number, the computation 
is terminated; else we find a steplength a satisfying 

F(x 4- as) = F»vx) — t]<xsTGs , 
where 0 < 2r\ < 1. Taking x + = x + as, we compute f+ = f ( x + ) , ieM, a[ = 
= g/vx

+), ieM, and F+ = F(x+) = max f(x+) . 
ieM 

Step 4. We transform the matrix G to make it positive definite and an as good 
approximation as possible to the Hessian matrix of the Lagrangian function for 
(1.2). Usually this goal is attained by means of quasi-Newton updates determined 
by using the differences x + — x, a+ — ah ie M, and Lagrange multipliers for the 
quadratic programming problem (1.3). 

. Step 5. We set x = x + , ft = f + , i e M, a, = a + , i e M, F = F+ and go to 
Step 2. 

The most important step of this method is the solution of the quadratic programm­
ing subproblem, in which we seek a pair (s*, z*) e Ln+1 such that 

(1.3) <p(s*> z*) = min (p(s, z) , 
(s,z)eLn + i 

where 
cp[s, z) = ^-sTGs + z 

and 
L, l+1 = {(s,z)eRn+1:fi + ajs = z, i e M} . 

The function cp(s, z) can be rewritten in the form 

+ [o. 1] vis, z) = i[sT, z ] ; G, 0" 
[o, 0 

where G is a symmetric positive definite matrix. Now it is apparent that (1.3) is 

380 



a quadratic programming problem with a singular positive semidefinite matrix. 
Usual methods solving this problem require nonsingularity. However, owing to the 
very specific form of the matrix in our case, it is possible to develop methods over­
coming the singularity drawback. In this paper, we are going to present one of these 
methods, which consists in the solution of the dual quadratic programming problem. 

The fact that the matrix G is positive definite implies that the problem (1.3) is 
convex and therefore we may apply the duality theory to it [1]. Thus we obtain 
a dual quadratic programming problem, where we seek a vector u* e Rm such that 

(1.4) xjj(u*) = min ij/(u), 
« 6 L m 

where 
xj,(u) = \uTATHAu - fTu 

and 
Lm = {u e Rm: eTu = 1, w _• 0} . 

Here A = [al9 ..., am] is a matrix the columns of which are vectors ah i e M, f = 
= [/i- ...,/m]T> e = [ 1 , . . . , 1]T, H = G~K The solution of the problem (1.3) can 
be obtained from the solution of the problem (1.4) by means of 

(1.5) s* = -HAu* , 
z * = fu* __ (u*y ATHAU* 9 

which follows from the theory of duality. The vector u* which is the solution of 
(1.4), is also the optimal vector of the Lagrange multipliers for (1.3). 

The problem (1.4) is a convex one. Hence the vector u* e Rm is the solution of 
(1.4) if and only if the Kuhn-Tucker conditions are valid [1], i.e. if and only if 

(1.6) eTu* - 1 , 

u* ^ 0 , 

and there exists a number z* such that 

(1.7) v* = ATHAu* - f + z*e ^ 0 , 
(V*)T

 u* = 0 . 

The vector v* is the vector of Lagrange multipliers for (1.4). (1.6) and (1.7) together 
imply that z* in (1.7) coincides with the z* in (1.5). This in turn implies that v* is, 
at the same time, the vector of the values of constraints of (1.3). 

The dual method for solving (1.3) that is under examination in this paper is essenti­
ally the method of active constraints applied to (1.4). In each iteration of this method 
we start with a feasible point of the problem (1.4), for which uf- > 0, i el a M and 
ut = 0, i e M \I, and we try to find the optimal point of the problem (1.4) in the 
subspace defined by the constraints u( = 0, i e M\L If we meet the boundary of the 
feasible set, we delete a convenient index from the set I a M and the whole process is re­
peated. If we find the optimal point of the problem (1.4) in the subspace defined by 
the constraints ut = 0, ieM\I, we test whether the conditions (1.7) are fulfilled. 
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When this is the case, we terminate the computation, else we add a convenient 
index to the set I a M and the whole process is repeated. 

The convergence of the dual method can be guaranteed by choosing individual 
feasible points of the problem (1.4) so as to make the function cp(s, z) monotone 
increasing. However, one problem appears, namely that of linear dependence of the 
vectors ah i el. We must discern two cases. In Section 2 we analyse the nonsingular 
case with linearly independent vectors ah i el and we generalize these considerations 
in Section 3. Section 4 contains the complete algorithm of the dual method as well as 
the proof of its convergence. 

This paper was motivated by [6], which provides a description of the dual method 
for solving the standard quadratic programming problem with a positive definite 
matrix in the quadratic term. 

2. ANALYSIS OF THE NONSINGULAR CASE 

Let I a M. Let D(I) denote the problem which results if we substitute I for M 
in the problem (1.4). Let P(I) have the similar meaning with respect to the problem 
(1.3). The problem D(I) is dual to the problem P(I). 

In this section, we are dealing with nonsingular case only, where the vectors ah 

i el are linearly independent. Let the Lagrange multipliers uh i el be the solution 
of the problem D(I) and let the pair (s, z) e Rn+1 be the solution of the problem P(I). 
In order to simplify the notation, we introduce symbols u denoting the vector con­
taining all uh i eI, f denoting the vector off, i el, A denoting the matrix containing 
ah i el as its columns, and e denoting the vector containing only units, having the 
same dimension as u andf. Furthermore, we write 

(2.1) C = (ATHA)-1 , 
Q = H - HACATH, 
p = Ce, 

where H = G'1. Clearly QA = 0 and QGQ = Q. 

Definition 1.1. We say that the Lagrange multipliers uh i el are a basic solution 
of the problem D(l) and that the pair (s, z) e Rn + 1 is a basic solution of the problem 
P(I) if vt = aTHAu — f + z = 0 for all indices i el. 

Lemma 2.1. Let the Lagrange multipliers uh i el be a basic solution of the problem 
D(I) and let the pair (s, z) e Rn+i be a basic solution of the problem P(I). Then 

. p T / - i (2.2) 
T 

P e 
u = C(f- ze), 

s = —HAu . 
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Proof. Since vt = 0 for all indices iel, we have u = C(f - ze) by (1.7). Applying 
(1.6) we obtain 1 = pTf — zpTe, which means z = (pTf — i)\pTe. Mutual duality 
of D(I) and P(I) brings s = - H A u (see (1.5)). • 

The formulae (2.2) may be formally applied to an arbitrary subset I c M. However, 
a situation can arise in which u{ ^ 0 does not hold for all indices i el. In this case 
there is no basic solution of the problem D(I). Each problem D({k}), where {k} e M 
is a single-element subset of M, has a basic solution, for uk = 1 holds of necessity 
by (1.6). 

Suppose the Lagrange multipliers uh iel are a basic solution of the problem 
D(I) and the pair (s, z) e Rn + x is a basic solution of the problem P(I). If vt = aTHAu — 
— fi + z ^ 0 for all indices i e M \I, then the vector u* = [uT, 0]T is the solution 
of the problem (1.4) (assuming a suitable ordering of indices) and the pair (s*, z*) = 
= (s, 2) is the solution of the problem (1.3). In the other case there exists an index 
k e M \ I such that vk = aTHAu — fK + z < 0, which suggests that the index k 
has to be added to I. 

Let us set I+ = I u {k}. Since the problem D(I+) need not have any basic solution, 
we want to find a subset I a I+, ke I, such that the problem D(I) may have a basic 
solution and, at the same time, cp(s. z) > <p(s, z), where (s, z) is a basic solution 
of the problem P(I) and <p(s, z) is defined by (1.3). 

Let DX(I+) be the problem we obtain from D(l+) after substituting f(A) = ft + 
+ (1 — X) vh i el+ for fh i el+ and let PJI*) have the analogous meaning with 
respect to P(I+). Let us suppose 0 ^ X ^ 1. Let the Lagrange multipliers ut(X), 
i el+ be the solution of the problem DX(I+) and let (s(X), z(X)) e Rn+1 be the solu­
tion of the problem PX(I+). Let u(X) denote the vector containing ut(X), i el. 

The Lagrange multipliers u^O) = uh iel and uj0) = 0 are a basic solution 
of the problem D0(I

+). We want to find the maximum value of the parameter X 
such that the Lagrange multipliers ut(X), i el+ are a basic solution of the problem 

Din 
Lemma 2.2. Suppose the Lagrange multipliers w;(0), u{(X), iel+ and the pairs 

(s(0), z(0))e R„+i, (s(X), z(Xj)e R„+l are basic solutions of the problems D0(I
+), 

DX(I+), P0(I
+), PX(I+), respectively. Let us introduce 

(2.3) Ik = CATHak, 

h = 1 - eTak, 
yk = h\fe, 
h = alQak = aTH(ak - Aqk) 

assum ing /3* + ^ * a T h e n 

(24) u(X) = u(0) - a(qk + ykp) , 
( ' ' uk(X) = w*(0) + a , 
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z(X) -z(0) + ayk, 

where 

(2.5) a = —A-
hlk + h 

Proof. Using (1.7) we obtain 

АТНА, АтНаЛ \и(Х) - u(0) 

ат

кНА, ат

кНак\[ик(Х) - ик(0) 
= - Г ( z ( A ) - z ( 0 ) ) e 

[Xvk + (z(X) - z(0))J 

Hence, by (2.1) and (2.3) 

(2.6) u(X) - «(0) = - (z(X) - z(0)) p - (uk(X) - uk(0)) qk 

and 

aT

kHA(u(X) - u(0)) + aTHak(uk(X) - uk(0)) = -Xvk - (z(X) - z(0)) . 

This equality together with (2.6) gives 

-qTe(z(X) - z(0)) + aT

kQak(uk(X) - uk(0)) - -Xvk - (z(X) - z(0)) , 

and consequently, 
Xvk + Pk(z(X) - z(0)) 

(2.7) »k(x) - M°) 

Considering (1.6) we get 

eT(u(X) - u(0)) + (uk(X) - uk(0)) = 0, 

which, by virtue of (2.6), yields 

~(z(X) - z(0)) eTp + (1 - eTqk) (uk(X) - uk(0)) = 0 . 

Hence we obtain 

(2.8) z(X) - z(0) = yk(uk(X) - uk(0)) . 

Finally, substituting (2.8) into (2.6) and (2.7), we get (2.4) and (2.5). 

Lemma 2.3. Let the assumptions of Lemma 2.2 hold. Then 

(2.9) (p(s(X), z(X)) = cp(s(0), z(0)) + WMk + Sk) (uk(X) + uk(0)) . 

Proof. Using (1.5) and (2.4) we get 

s(X) - 5(0) = -HA(u(X) - u(0)) - Hak(uk(X) - u,(0)) = 

= aHA(qk + ykp) - aHak = a(ykHAp - Qak) , 

so that 

(5(A) - 5(0))T G 5(0) = -a(ykHAp - Qak)
T G(HA u(0) + Hck uk(0)) = 

= -ayk(l - uk(0)) - ayke
Tqk uk(0) + adk uk(0) = 

= -ayk + or>%yfc + Sk) uk(0) 

and 

(s(X) - s(0))T G(s(X) - s(0)) - a\ykHAp - Qak)
T G(ykHAp - Qak) = 

D 
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= a2(y

2

ke
Tp + arQak) = a 2 (f tr t + 5k) 

since QA = 0 and QGQ = Q. Thus 

cp(s(A), z(A)) = <p(s(0), z(0)) + (s(A) - s(0))T G s(0) + 

+ ±(s(X) - s(0)f G(s(X) - <0)) + (z(A) - z(0)) = 

= <p(s(0), z(0)) - alk + a(ftyfc + <5t) uk(0) + 

+ K t e + dk) («*(A) - "t(0)) + o% = 

= «p(s(0), z(0)) + K t e + **)(«*W + ut(0)) 

and the proof is completed. 

The maximum value of the parameter X for which the problem DX(I+) has a basic 

solution, is determined by the condition u[X) ^ 0. Let us write 

(2.10) at 

D 

hlk + $k 

Uj(0) . ut{0) 
a i = Lw — m m LW— 

9kj + 7kPj <61 akt + JkPi 

where I = {i el: qki + ykpt > 0}, qki is the i-th component of the vector qk and pt 

is the i-th component of the vector p. Let us set a = min (a l 5 a 2 ). Then the maximum 

value X0 of the parameter X is defined as X0 = ajal. 

When a = a x (i.e. A0 = 1), the Lagrange multipliers Mf(.A0), ieI+ are a basic 

solution of the problem D(I+) and we can set I = I+. If the vectors ah iel+ are 

linearly independent (i.e. if 3k + 0) we can construct the matrices A = [A, afc] and 

C = (ATHA)|-1. Then 

(2.11) С = C + qкчl Чu 

Һ ' àк 

чl 1 

ðк 
ôк. 

(for the derivation of this formula see for instance [5]). If the vectors ah iel+ are 

linearly dependent (i.e. Sk = 0), the matrix C is not defined and we must proceed 

in the manner described in Section 3. 

When a + ax (i.e. X0 < 1), we have Uj(X0) = 0 by (2A0). Let us set Ix = I\{j}, 

I+ = I+ \ {j}, and v\1} = (1 - X0) vh i eI x

+ . Let D;.(I+) denote the problem result­

ing from the problem D(l+) after substitutingf(A) = f + (1 — X) v\l\ i e l+ (where 

0 ^ X ^ 1) forf, i el +. The Lagrange multipliers u-l)(0) = W^AQ), i e I+ are a basic 

solution of the problem D0(I+). Again we want to find the maximum value of the 

parameter X, for which the Lagrange multipliers u\1\X), iel+ are a basic solution 

of the problem DX(I+). For this purpose we can apply the preceding process (Lemma 

2.2 and Lemma 2.3). except that instead of the values referring to the problem 

D(I+) we use the values referring to the problem D(I+). Especially, the matrices A, 
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C are to be replaced by the matrices Al9 Cl9 respectively, such that Ax = A(J), 
which is the matrix A with the j- th column removed, and 

(2.12) Cx = c w ) - r ^ i l 5 

CJJ 

where CUJ) results from C by removing the j- th row and the j- th column, C(.J) results 
from the j- th column of C by removing the element C,7. (For the derivation of the 
formula (2.12) see e.g. [5]). 

Suppose A0
l) = a(1)/a(

1
1) is the maximum value of the parameter A, for which 

the problem Dx(l
+) has a basic solution. If A(

0
1} = 1, we set I = I+, else we repeat 

the whole process. In this manner we obtain a sequence I + , ...,I+ of subsets of the 
set I+. The cardinality of each of these subsets is by one element less than the cardina­
lity of its precursor. But the set I+ is finite and the problem D({k}) has a basic solution, 
therefore we obtain, after a finite number of steps, a subset I+ cz I+

? k e I+ such that 
the problem D(I+) has a basic solution. Thus we can set I = I+. 

So far we have been treating the case phyk + Sk + 0. Now let us suppose pkyk + 
+ Sk = 0. In this case, there exists no nonzero value of the parameter A such that the 
problem DX(I+) has a basic solution. On the other hand, the problem D0(I

+) has 
more basic solutions that are defined by the equations. 

(2.13) if (a) = ii(0) - a(qk + ykp) , 

uk(a) = uk(0) + a . 

The condition pkyk + 5k = 0 is valid only if fik = 0, yk = 0 and dk = 0 (this is 
implied by the facts that C is positive definite, Q is positive semidefinite, and by 
(2.3)). We have immediately z(a) = z(0) and 5(a) = 5(0). The problem Po(I+) has 
a unique solution (s(a)9 z(a)) = (s(0)9 z(0)) e Rn+1 so that (p(s(a)9 z(a)) = (p(s(0)9 

2(0)) for an arbitrary value of the parameter a. 
The Lagrange multipliers u,(a), i el+ are a basic solution of the problem D0(I

+) 
only if u(a) = 0. 

Lemma 2.4. There exists a finite maximum value of the parameter a in (2.13) 
for which the Lagrange multipliers fi;(a), i e I+ are a basic solution of the problem 

Do(n 
Proof. Using (2.3) we get 

eT(qk + ykP) = eTqk + — - ^ - ^ eTp = eTqk + 1 - eTqk = 1 . 
elp 

Therefore there exists at least one index i e I such that qki + ykpt > 0. Hence necessa­
rily a ^ al9 where a2 is a finite value determined by (2.10). • 

When we choose a = a2, then uy(a) = 0 holds for some index j el. Let us set 
h = T^{j}, ^ = T+s-{j}> and v\l) = vi9 ielf. Let Dk(I

+) denote the problem 
D(I+) after substituting f(A) = f + (1 - A) v\X), iel+ (where 0 = A ^ 1) for 
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fi, i GI+ . Then the Lagrange multipliers u^1}(0) = ut(a), ze I + are a basic solution 
of the problem D0(I

+). Thus we can proceed in the same way as we did in the case 
where fikyk + Sk + 0 and a + a1? only for pkyk + Sh = 0 we formally set ax = oo 
in (2A0). 

Let I be a set we have obtained by the process described in this section. It remains 
to prove that (p(s, z) > (p(s, z). where (s, z)e Rn + 1 is the solution of the problem 
p(i). 

Theorem 2.1. Suppose (s, z) e Rn+l is the solution of the problem P(l) and (s, z) e 

e Rn+1 is the solution of the problem P\T). Then (p(s,z) > cp(s, z). 
Proof. The set I is obtained after a finite number of steps, in which we construct 

subsets I = Ip c ... c:I+ c l + . Since all steps are formally equivalent, it suffices 
to analyse the first step. Let (s(0), z(0))eR„+ 1 be the solution of the problem 
P0(I

+) and (s(a), z(a))e Rn+1 the solution of the problem P0(/
+). Two cases are 

possible. If fikyk + Sk = 0, then s(a) = s(0) and z{a) = z(0), so that (p(s(a), z(a)) = 
= (p(s(0), z(0)). If pklk + Sk + 0, we get, by (2.4) and (2.9), 

(p(s(a), z(a)) = cp(s(0), z(0)) + i*(pkyk + Sk) (2uk(0) + a) . 

But pkyk + Sk > 0 (because fikyk + Sk = 0 and fikyk + Sk + 0), u/c(0) = 0 and 
a ~> 0, so that (p(s(a), z(a)) = (^(s(0), z(0)) and <p(s(<x), z(a)) = (p(s(0), z(0)) holds 
if and only if a = 0. Combining both cases we obtain 

(2.14a) (p(a) = <p(0), 

(2.14b) (p(a) = (p(0) o s(a) = s(0) , z(a) = z(0) , 

where cp(a) = (p(s(a), z(a)) and (p(0) = (p(s(0), z(0)). Now we will prove that (p(s, z) > 
> (p(s, z). The validity of (2A4a) in each step yields cp(s, z) = (p(s, z). Now let us 
suppose (p(s, z) = (p(s, z). Since (2A4b) is valid in each step, we have s = s and 
z = z. Therefore 

h = z - ajs - fk = z - ajs - fk = vk < 0, 

which is a contradiction, for fc e I and (s, z) e Rn+i is a basic solution of the problem 
P(I), and consequently, vh = 0. • 

3. ANALYSIS OF THE SINGULAR CASE 

Supposing I cz M, let J c I be the maximum subset of the set I such that the 
vectors ah i e J are linearly independent. In the singular case we have J =j= I. Let 
the Lagrange multipliers uh i el be a basic solution of the problem D(I) and the 
pair (s, z) e Rn+l be the basic solution of the problem P(I). Let u denote the vector 
containing uh i e J, let / denote the vector containing elements fh i e J and let A 
denote the matrix containing vectors ah i e J as its columns. Let e be the vector con­
taining only units and let C, Q be the matrices defined by (2.1) 
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In the singular case, we proceed in the similar way as in the nonsingular one. 

Again we seek a subset I a I+, ke I such that the problem P(7) has a basic solution 

(s, z)eRn+1 together with (p(s,z) > cp(s,z) (I+ = I u {k}, where k_M\I and 

vk = aTHA — fk + z< 0). However, different formulae are needed for the computa­

tion of the Lagrange multipliers. 

Let us suppose that / = J u {l} (we are dealing with only those cases where the 

subset I\ J has at most one element). Let DX(I+), Px(l+) be the problems defined 

in Section 2. The Lagrange multipliers ut(0) = uh i el and uk(0) are a basic solution 

of the problem D0(I+). We are seeking the maximum value of the parameter A 

for which the Lagrange multipliers ut(X), iel+ are a basic solution of the problem 

Lemma 3.1. Suppose ut(0), i e I+, (s(0), z(0)) eRn+l, ut(X), i e I+, (s(X), z(X)) eRn+1 

are basic solutions of the problems D0(l+), P0(l+), DA(I+), P//+), respectively. 

Let us introduce 

(3.1) qx = CATHat, 

qk = CATHak , 

Pi = 1 - eT

qi, 

pk= I - eTqk , 

h = alQ,<*k = <*kH(<*k - MR 

and suppose Pi =1= 0, Sk =j= 0. Then 

(3.2) u\X) = M(0) щ qк 
ßi 

Чi 

м,(Я) = = м/0) -Љ, 
' ß , 

uк(X) = uk(Ö) + a, 

z(X) = z(0), 
where 

(3.3) a = - l Ş . 

Рroof. Using (1.7) we get 

"A T ЯA , AтЯяь AтHaк ~u(X) - м(0) " = — 
aJHA, aтHah aJHaк uЏ) - м/0) 
aт

кHA, aтHah a

т

кHaк uк(X) - мfc(0) 

\z(X) - z(0)) e 

z(X) - z(0) 

z(X) - z(0) + Xvk_ 

so that, by (2.1) and (3.1), 

u(X) - M(0) _ _(Z(A) _ z(0)) p - (Ul(X) - M,(0)) q, - (uk(X) - M,(0)) qk 

and 
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p/z(X) - z(0)) + ajQa/u/X) - u/0)) + ar,Qak(uk(X) - uk(0)) = 0, 

pk(z(X) - z(0)) + alQa/u/X) - u/0)) + aT
kQak(uk(X) - u/0)) = -Xvk. 

Since the vector a, is a linear combination of the vectors ah i e J, we get Qa, = 0. 
Thus 

z(X) - z(0) = 0 , 

uk(X) - uk(0) = -X — ^ - = « 

and 

(3.4) ti(A) - M(0) = -(u/X) - u/0)) a, - (uk(X) - uk(0j) qk . 

Using (1.6) we get 

e\u(X) - M(0)) = -(u/X) - M ;(0)) - (uk(X) - uk(0)), 

which together with (3.4) yields 

u/X) - u/0) = - ^ (uk(X) - uk(0)) = - ^ a . 
Pi Pi 

When substituting the last formula into (3.4), we finally obtain u(X) — u[0) = 

h~~<li 
Hi 

Lemma 3.2. Let us suppose that all suppositions of lemma 3.1 hold. Then 

(3.5) <p(s(A), 2(A)) = <p(s(0), z(0)) + ia Sk(uk(X) - uk(0)). 

Proof. Using (1.5) and (3.2) we get 

s(X) - s(0) = -HA(u(X) - u(0)) - Ha/u/X) - u/0)) - Hak(uk(X) - uk(0)) = 

= aHA(qk ~J^~ «HU ~ J «<) = ~4<i^ ' J 2«A = ~aQak , 

so that 

(s(X) - s{0)Y G s(0) = aaT
kQG(HA u(0) + Ha, u/0) + Hak uk(0j) = 

= <xaT
kQak uk(0) = adk uk(0) 

and 
(s(X) - s(0))T G(s(X) - s{0)) = a2ar

kQGQak = a2dk 

for QA = 0, Qa, = 0, and QGQ = Q. Thus we obtain 

<p(s(X) - z(X)) = q>(s(0), z(0)) + (s(A) - s(0))T G s(0) + 

+ i(s(X) - s(0)Y G(s(X) - s(0)) + (z(X) - z(0)) = 

= cp(s(0), z(0)) + aSk uk(0) + iadk(uk(X) - uk(0)) = 

= <p(s(0), z(0)) + ia8k(uk(X) + M,(0)) . D 

The maximum value of the parameter X for which the problem Dx(l
+) has a basic 
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solution is defined by the condit ion u(X) ^ 0, ut(X) ^ 0. Let us write wt = qki — 

— (PkfPi) qu, i e J and wl = (ft/J?*) (qki is the i-th c o m p o n e n t of the vector qk and qu 

is the i-th c o m p o n e n t of the vector qt). Fur thermore, let us write 

Vь 
(3.6) « ! = - ГS 

<5 

u y(0) . /u/0) 
-J^-L = min 
W: iel \ w 

where I = {i el:wt > 0}. Let us set a = min(a 1 ? a 2 ). Then the maximum value 

X0 of the parameter X is defined by X0 = a/a t. 

If a = ax (i.e. if 2 0 = 1), then the Lagrange multipliers ut{X0), i el+ are a basic 

solution, of the problem D(I+) and we can set I = I+. Since by assumption Sk 4= 0, 

the vector ak is not a linear combination of the vectors ah i e J, so that we can set 

J = J u {k} and construct the matrices A = [A, ak\ C = (APHA)""1 (the matrix C 

is computed according to (2.11)). 

If a =)= a t (i.e. X0 < 1), then, by (3.6), Uj(X0) = 0. If we set Jt = J\{j}9 h = 

= I\{j}9 it = I+ x{/}> a n d ^ 1 } = (1 — ^o) ^P le/ i" , then the Lagrange multi­

pliers uj-^O) = ut(X0)9 i el+ are a basic solution of the problem D0(I+) and we can 

repeat the whole process (the matrices Al9 Cx are defined in the same way as in the 

nonsingular case). However, two cases are possible. 

Lemma 3.3. The elements qlh i e J are the uniquely determined coefficients 

of linear dependence of the vector ax on the vectors ah i e J. 

Proof. Qat = H(at — Aqt) = 0 implies 

(3.7) at = Aqt. 

Since the vectors ai9 i e J are linearly independent, the expression (3.7) is uniquely 

determined. • 

If qtj = 0, the vector at is a linear combination of the vectors ah i e Jx. In this 

case we have the set Jx as well as the matrices Al9 Ct unchanged. If qtj 4= 0, the vector 

at is not a linear combination of the vectors ah ie J±. In this case we add the index 

I to the set Jt and reconstruct the matrices Ax and Ct (thus obtaining a nonsingular 

case). 

So far we have been treating the case with dk =j= 0. Now let us suppose 5h = 0. 

In this case there exists no nonzero value of the parameter X such that the problem 

D/I+) has a basic solution. On the other hand, the problem Do(^+) n a s more basic 

solutions that are defined by the equations 

(3.8) «(«) = «(0) - Jqk - & 
\ Pi 

u,(«) = u,(0) - a-j, 
Pi 
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uk(a) = uk(0) + a, 

and z(a) = z(0), s(a) = s(0) hold (for s(a) = s(0) — aQak, where Qak = 0 because Q 
is positive semidefinite and aT

kQak = Sk = 0). Hence the problem Po(I+) has only 
one solution (s(a), z(a)) = (s(0), z(0)) e Rn+1, so that cp(s(a), z(a)) = (p(s(0), z(0)) 
for an arbitrary value of a. 

The Lagrange multipliers ut(a), i el+ are a basic solution of the problem D0(l
+) 

only if u(a) = 0 and wz(a) ^ 0. 

Lemma 3.4. There exists a finite maximum value of the parameter a in (3.8) 

for which the Lagrange multipliers ut(a), i el+ are a basic solution of the problem 

D0(I
+). 

ßk ßk 
w = qк q, and w, = — 

ß, ß, 

Proof. Denoting 

and using (3.1) we obtain 

e
Tw + w, = e\k - f ^ + f - O - A j - ^ l - A j + J - l . 

P/ Pz Pz Pz 

Since eTw + wz = 1, there exists at least one index ieI such that wt > 0. Hence 
of necessity a ^ a2, where a2 is a finite value defined by (3.6). • 

If we choose a = a2, then u/(a) = 0 is valid for some j el. Setting Jx = J\{j}, 
It = I\{j}, Ii+ = I+ \ { I } , and v(/} = vh i el +, the Lagrange multipliers u(1)(0) = 
= ut(a), i el+ are a basic solution of the problem D0(I

+). Therefore we can proceed 
in the same manner as if Sk + 0, a =t= a l9 except that for 3k = 0 we formally set 
ax = oo in (3.6). 

We have shown that a =j= ax provided <5fc = 0, and thereby we have demonstrated 
the correctness of our assumption that the set I \ J has at most one element. 

It remains to prove that cp(s, z) > <p(s, z), where (s, z)e Rn+1 is a solution of the 
problem P(I). 

Theorem 3.1. Let (s, z)eRn+1, (s, z) e Rn+1 be the solutions of the problems 
P(I), P(I), respectively. Then cp(s, z) > cp(s, z). 

Proof. The set I results after a finite number of steps in which we construct the 
subsets I == I+ cz ... cz I+ cz I + . We will prove that 

(3.9a) cp(a) = <p(0) , 

(3.9b) (p(a) = cp(0) o s(a) = s(0) , z(a) = z(0) , 

where (p(0) == cB(s(0), z(0)) is the value of the function (1.3) at the beginning of 
a current step and cp(a) = <p(s'a), z(a)) is the value of the function (1.3) at the end 
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of a current step. (3.9) has been already proved (Section 2, (2A4)) for those steps 

in which the nonsingular case occurs. Since all steps that involve the singular case 

are formally identical, it suffices to analyze the first one. Two cases are possible. 

If 8k = 0, then s(a) = s(0) and z(a) = z(0) so that <p(s(a), z(a)) = (p(s{0), z(0)). If 

3k * 0, we have, by (3.2) and (3.5), <p(s(oc), z(a)) = q>(s{0), z(0)) + iadk(2uk(0) + a). 

But Sk > 0 (since Sk = 0 and Sk + 0), u^(0) = 0, a = 0. Thus <p{s{a), z(a)) = cp(s(0), 

z(0)) and the equality is valid if and only if a = 0. Combining the both cases we 

obtain (3.9) and proceed in the same manner as in the proof of Theorem 2.1. • 

4. ALGORITHM OF THE DUAL METHOD 

In Section 2 and Section 3, we have described the construction of the principal 

step of the dual method for solving the problem (1.3). Now we will describe the 

algorithm that contains these major steps. 

Algorithm 4.1. 

Step 1. Choose arbitrarily an index keM. 

Step 2. Set I : = {k}, J : = {k}, u : = [1], e : = [1], A : = [ a J , C : = [\jaT

kHak~\ 

and calculate z : = fk — aT

kHak. 

Step 3. Calculate 

5 : = — H ]Г aЏi 
ІЄІ 

and 
vk : = z - fk - ajs = min (z - f{ - a]s) . 

iєM\I 

If vk = 0, terminate ((s, z) e K,,+ 1 is the solution of the problem (1.3)). If vk < 0, 

set uk : = 0 and go to Step 4 provided J = I, else go to Step 8 provided J =\= I. 

Step 4. (Nonsingular case.) Calculate p : = Ce, gfc : = CATHak, fik : = 1 — eTgfc, 

yfc : = pk]eTp, and <5fc : = aTH(ak — Agfc). If /?fcyfc + (5/, = 0, set ax : = oo, else set 

â  : = — 
Äľ/c + <5fc 

Calculate 

a2 : = = mm 
g/cj + ikPj *t Vgfci + ikPi 

where / = {iel: qki + yfepf > 0}. Set a : = min(a 1 ? a2) and calculate u : = u -
- «(gfc + 7kP)> uk:= uk + a, z : = z + ayfc, vA : = (1 - a/a t) vk. If a = a l 5 go to 
Step 5, else go to Step 6. 
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Step 5. Set J : = J u {k}. If dk = O, set / : = k and go to Step 3. If Sk #= 0 set 

J : = Jxj {k}, u : = [«T, M,]T, e : = [eT, 1]T, A : = [A, a j and 

C : = C + Qk l Чk'\ 

h ' sk\ 
ЧІ 1 

sk' ãj 
and go to Step 3. 

Step 6. If the set J contains one element and J = I, then go to Step 2. If J contains 
one element and J 4= I, set I := {/}, J := {/}, u := [uz], e := [ I ] , A := [az], C : = 
:= [l/aTHaz] and go to Step 4. If J does not contain one element, set I := I\{I}, 
J := J\{j}, u := u0), e := e(j) and A := A(j), where u(j), eU) result from u, e 
by deleting the elements Uj, ej9 respectively, and A(j) results from A by deleting the 

c^ic^y 
column a.. Then set 

C : = CUjJ - -
C; 

where C ( j j ) results from C by deleting both the j - th row and the j- th column, CU) 

results from the j-th column of C by deleting the component CJJ. If J = I go to Step 
4, else go to Step 7. 

Step 7. If q/j = 0, set ql : = q\j), where q(
z
j) results from qx by deleting the element 

qtJ, and go to Step 8. If qtj #= 0, calculate qz := CATHat and O*z := aTH(al — Aqz). 
Set J := J u {/}, u := [uT, uz]

T, e := [eT, 1]T, A := [A , Oz] and 

C : = C + 
qiql 

<5; 

<5I' 

< 5 , 

1 _ 

< 5 ; 

and go to Step 4. 

S t e p 8. (Singular case.) Calculate qk : = CATHak, j3k:= 1 ~ eTqk, and O*fc: = 

: = ajH(ak — Aqk). If (5fc = 0, set a! : = oo. If (5fc =f= 0, set 

Calculate 

a2 : = 
u 

min I —I 

where wř = qfcř - (/ifc//iz) qzí, i 6 J, wz = /3fc//?z, / = {iel: w, > 0}. Set a : = min 
( a 1 ? a 2 ) . Calculate u := u - a(qk - (/3fc//3ř) qz), uz : = uz - a(/jfc//jz), ufc : = ufc + a, 
a n d vfc : = (1 — a/a t ) vfc. If a = a 1 ? set qz : = [qT, 0 ] T and go to Step 5. If a 4= a x 

a n d jf = /, set I: = I \ {/} and go to Step 4. If a =t= a x and j #= /, go to Step 6. 
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Algorithm 4.1 has a considerably complex logical structure, but its numerical 

calculations are not more expensive than those of a usual algorithm for solving 

the standard quadratic programming problems. Similar operations take place in 

both the singular and nonsingular cases, the only exception being Step 7 where, 

when performing the transition from a singular to a nonsingular case, it is necessary 

to calculate repeatedly the vector qt in order to make the reconstruction of the 

matrix C possible. 

Let us show that, in the singular case, pt 4= 0 holds (assumption of Lemma 3.1). 

This inequality is valid in each transition from a nonsingular case to a singular case 

(&7/c + $k + 0 and Sk = 0). Inspecting Step 7 and Step 8 we can see that the value 

/?i remains unchanged in the singular case (the vector qt is changed only by adding 

or by deleting a zero element). Therefore we have always fii 4= 0 in the singular case, 

so that the assumption of Lemma 3.1 is valid. 

Now we will prove the convergence of the dual method for solving the problem 

(1.3). 

Theorem 4.1. Algorithm 4.1 finds the solution of the problem (1.3) after a finite 

number of steps. 

Proof . Let (s*, z*) e Rn+1 be the solution of the problem (1.3) and let I* a M 

be a set of indices such that (s*, z*) e Rn+1 is a basic solution of the problem P(I*). 

During the execution of Algorithm 4.1 we construct a sequence of subsets I,- c M, 

j _ 0. Theorems 2.1 and 3.1 guarantee the validity of cp(~pZj) > (p(sj^l, Zy-i), 

j = 1 (the pair (sj9 Zj) e Rn+1 is a basic solution of the problem P(I/))- Hence the 

sets Ij c M, j = 0 must be distinct. Since M is finite, the sequence of mutually 

different subsets Ij <~ M, j = 0 is also finite. The last element of this sequence must 

be the set I*, for, if it were not so, it could be possible to continue in constructing 

the next subset according to Algorithm 4.1. ~~ 

Algorithm 4.1 uses the matrices H = G~\ C = (A T HA ) - 1 . If we desire to obtain 

a numerically more stable version of the algorithm, we can replace the matrix H = 

= G _ 1 with a triangular decomposition G = LLT (L i s a lower triangular matrix). 

Similarly, instead of the matrix C, we can make use of the orthogonal decomposition 

zгu-вед, 

where Q is an orthogonal matrix and R is an upper triangular matrix. More details 

relative to these decompositions are presented in [6]. 
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S o u h r n 

DUÁLNÍ METODA PRO ŘEŠENÍ SPECIÁLNÍ ÚLOHY KVADRATICKÉHO 
PROGRAMOVÁNÍ, KTERÁ SE VYSKYTUJE PŘI NELINEÁRNÍ MINIMAXOVÉ 

APROXIMACI 

LADISLAV LUKŠAN 

V článku je popsána duální metoda pro řešení speciální úlohy kvadratického programování, 
která se vyskytuje jako podúloha při nelineární minimaxové aproximaci. Podrobně jsou analyzo­
vány dva případy, které se liší lineární závislostí gradientů funkcí aktivních v daném bodě. 
Závěrem je uveden podrobný algoritmus duální metody a je dokázána jeho konvergence po ko­
nečném počtu kroků. 

Pe3KDMe 

AyAJlLHblM METOA PEIUEHMil CnEITHAJIBHOM 3AjTAHH KBAAPATHHHOrO 
HPOrPAMMHPOBAHHil KOTOPA>I iJBJLHETCil nO^A/^AMEM HEJ1HHEÍÍHOÍÍ 

MHHHMAKCHOM AnnPOKCHMACHH 

LADISLAV LUKŠAN 

B CTaTbe onHCbmaeTCfi uyajibHbiH MCTOA peiueHHH 3aflaHH KBajipaTH4Horo nporpaMMHpoBaHHH, 
KOTopaji flBJífleTCfl no#3aflaHeH HejiHHeHHoií MHHHMaKCHoii annpoKCHMauHH. no/rpoÓHee aHajiH3H-
pyioTca RESL cjiynaa, KOTopwe OTJiHHaiOTCH #pyr oř upyra JIHHCHHOH 3aBHCHMocTbK> rpajmeHTos 
4>yHKHHM, aKTHBHbix B flaHHoií TOHKe. B 3aKJiK>HeHHe npHBo/THTCH no#po6HbiH ajiropnTM JiyaJlbHO-
ro MeTo^a, H £OKa3biBaeTc$i ero cxô HMOCTb nocjie KOHenHoro nncjia uiaroB. 

Auíhors address: Ing. Ladislav Lukšan, CSc, Středisko výpočetní techniky ČSAV, Pod vodá­
renskou věží 2, 182 07 Praha 8. 
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