Title:
|
Some distribution results on generalized ballot problems (English) |
Author:
|
Saran, Jagdish |
Author:
|
Sen, Kanwar |
Language:
|
English |
Journal:
|
Aplikace matematiky |
ISSN:
|
0373-6725 |
Volume:
|
30 |
Issue:
|
3 |
Year:
|
1985 |
Pages:
|
157-165 |
Summary lang:
|
English |
Summary lang:
|
Czech |
Summary lang:
|
Russian |
. |
Category:
|
math |
. |
Summary:
|
Suppose that in a ballot candidate $A$ scores $a$ votes and candidate $B$ scores $b$ votes and that all possible $\left(\matrix {a+b} \\ a \endmatrix \right)$ voting sequences are equally probable. Denote by $\alpha_r$ and by $\beta_r$ the number of votes registered for $A$ and for $B$, respectively, among the first $r$ votes recorded, $r=1, \dots, a+b$. The purpose of this paper is to derive, for $a\geq b-c$, the probability distributions of the random variables defined as the number of subscripts $r=1, \dots, a+b$ for which (i) $\alpha_r=\beta_r-c$, (ii) $\alpha_r=\beta_r-c$ but $\alpha_{r-1}=\beta_{r-1}-c\pm 1$, (iii) $\alpha_r=\beta_r-c$ but $\alpha_{r-1}=\beta_{r-1}-c\pm 1$ and $\alpha_{r+1}=\beta_{r+1}-c\pm 1$, where $c=0,\pm 1, \pm 2, \dots$. (English) |
Keyword:
|
ballot problem |
MSC:
|
60C05 |
MSC:
|
60E99 |
MSC:
|
60J15 |
idZBL:
|
Zbl 0575.60008 |
idMR:
|
MR0789857 |
DOI:
|
10.21136/AM.1985.104138 |
. |
Date available:
|
2008-05-20T18:27:12Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/104138 |
. |
Reference:
|
[1] A. Aeppli: Zur Theorie Verketteter Wahrscheinlichkeiten.Thèse, Zürich (1924). |
Reference:
|
[2] D. André: Solution directe du problème rèsolu par M. Bertrand.C. R. Acad. Sci. (Paris), 105 (1887), 436-437. |
Reference:
|
[3] É. Barbier: Généralisation du problème rèsolu par M. J. Bertrand.C. R. Acad. Sci. (Paris), 105 (1887), 407. |
Reference:
|
[4] J. Bertrand: Solution ďun probléme.C. R. Acad. Sci. (Paris), 105 (1887), 369. |
Reference:
|
[5] M. T. L. Bizley: Derivation of a new formula for the number of minimal lattice paths from $(0, 0)$ to $(km, kn)$ having just t contacts with the line $my = nx$ and having no points above this line; and a proof of Grossman's formula for the number of paths which may touch but do not rise above this line.J. Inst. Actuar., 80 (1954), 55-62. MR 0061567, 10.1017/S002026810005424X |
Reference:
|
[6] M. T. L. Bizley: Problem 5503.Amer. Math. Monthly, 74 (1967), 728. |
Reference:
|
[7] K. L. Chung W. Feller: Fluctuations in coin tossing.Proc. Nat. Acad. Sci. U.S.A., 35 (1949), 605-608. MR 0033459, 10.1073/pnas.35.10.605 |
Reference:
|
[8] A. Dvoretzky, Th. Motzkin: A problem of arrangements.Duke Math. Journal, 14 (1947), 305-313. MR 0021531, 10.1215/S0012-7094-47-01423-3 |
Reference:
|
[9] O. Engelberg: Exact and limiting distributions of the number of lead positions in 'unconditional' ballot problems.J. Appl. Prob., 1 (1964), 168-172. Zbl 0203.19301, MR 0161354, 10.2307/3212068 |
Reference:
|
[10] O. Engelberg: Generalizations of the ballot problem.Z. Wahrscheinlichkeitstheorie, 3 (1965), 271-275. Zbl 0131.17304, MR 0185626, 10.1007/BF00535777 |
Reference:
|
[11] W. Feller: An introduction to probability theory and its Applications.Vol. I., Third Edition, John Wiley, New York (1968). Zbl 0155.23101, MR 0228020 |
Reference:
|
[12] H. D. Grossman: Another extension of the ballot problem.Scripta Math., 16 (1950), 120-124. |
Reference:
|
[13] S. G. Mohanty T. V. Narayana: Some properties of compositions and their application to probability and statistics I.Biometrische Zeitschrift, 3 (1961), 252-258. 10.1002/bimj.19610030403 |
Reference:
|
[14] L. Takács: A generalization of the ballot problem and its application in the theory of queues.J. Amer. Statist. Assoc., 57 (1962), 327-337. MR 0138139 |
Reference:
|
[15] L. Takács: Ballot problems.Z. Wahrscheinlichkeitstheorie, 1 (1962), 154-158. MR 0145601, 10.1007/BF01844418 |
Reference:
|
[16] L. Takács: The distribution of majority times in a ballot.Z. Wahrscheinlichkeitstheorie, 2 (1963), 118-121. MR 0160276, 10.1007/BF00531965 |
Reference:
|
[17] L. Takács: Fluctuations in the ratio of scores in counting a ballot.J. Appl. Prob., 1 (1964), 393-396. MR 0169340, 10.2307/3211869 |
Reference:
|
[18] L. Takács: Combinatorial methods in the theory of stochastic processes.John Wiley, New York (1967). MR 0217858 |
Reference:
|
[19] L. Takács: On the fluctuations of election returns.J. Appl., Prob., 7 (1970), 114-123. MR 0253447, 10.2307/3212153 |
. |