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1. INTRODUCTION

Suppose that in a ballot candidate 4 scores a votes and candidate B scores b votes.
. b\ .. .
The votes are drawn one at a time and the (a : ) different possible orders of draw-

ing are assigned equal probabilities. Denote by «, and B, the number of votes registered
for 4 and B respectively among the first » votes counted; r = 1,2, ...,a + b (notice
that a, and f, are random variables and «, + 8, = r). Let ¢ be a non-negative integer
and a = pb where u = 0. Denote by P; the probability that the inequality o, > pp,
holds for exactly j values among r = 1,2,...,a + b, by P}‘ the probability that
@, 2 pp, holds for exactly j values among r = 1,2, ...,a + b, and by P}* the prob-
ability that o, > pf, — c holds for exactly j values amongr = 1, 2,...,a + b.

The ballot problem was first formulated by Bertrand [4] in 1887. He discovered
that
a—b>b
M Pass a+b

if 4 = 1 and this was proved in the same year by André [2]. Also in 1887 Barbier [3]
found that

(2) Piyp =

a — ub
a+b

if u(=0) is an integer and this was proved by Aeppli [1] in 1924. Similarly we have

(3) P:+b=a+_1*_—1—b
a
if g =1and
+ 1 —ub
4 pr, =2
() o a+1
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if u(=0) is an integer. Formulae (3) and (4) are simple consequences of (1) and (2)
respectively.

In later years several authors, viz. Dvoretzky-Motzkin [8], Grossman [12],
Takdcs [14] and Mohanty-Narayana [13] have given the alternative proofs of the
ballot problem.

In 1962 Takdcs [14] proved that for an arbitrary u = 0,

0)

a b j

C. /

a+bj;o "(a+b—1>
J

where C, = 1 and the constants C; (j = 1,2,..., b) are given by the following
recurrence formula:

<k

)

(6) ; <[kﬂ]—;7_1—> 0 (k=1,2..)
j

where [ k] is the greatest integer <kp. If pis an integer, then C; = —u(j = 1,2, ...
., b) and (5) reduces to (2). Also in 1962 Takdcs [15] proved that

1
a+b

(5) Piyy =

) Py =

g (=1,2...,a+b)
if a and b are relatively prime numbers and u = a/b.

It is interesting to mention here that Chung and Feller [ 7] have proved an analogue
to (7). They have also found the distribution of the number of subscripts for which
either

o >p, or a,=p, but a_y >p,_y, r=12,...,a+b.

In 1963 Takdcs [16] derived the complete probability distribution {P;} of the num-
ber of strict lead positions, provided a > ub, where u is a non-negative integer.
He has also obtained an expression for P}, and deduced that for g = 1,

(a + b)
(8) Pi¥y, = P{a,> B, — ¢ for r=1,2,...,a+b}=1—~a—~+—c.
a+b
a
The result (8) can directly be derived by using random walk model (see [18], p. 212).
In 1964 Engelberg [9] has derived the complete probability distribution of the
number of strict and weak lead positions, viz. {P;} and {P}}, for p = 1, in an

‘unconditional’ ballot problem (where only the total number of votes Lis given and
all 2 possible arrangements of counting are equally probable).
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In 1965 Engelberg [10] has determined the complete probability distribution
{P}} of the number of weak lead positions, provided a > ub, where u is a positive
integer. She has also obtained the distribution {P;} for u = 1 and a = b.In the
general case both these complete probability distributions {P;} and {P}} have been
determined by Takdcs [17].

Bizley [5] derived formulae for P, and P,,,_, in case u = a/b. Bizley [6] also
made a conjecture concerning the complete probability distribution P; forj = 0,1, ...
..., a + b in the case u = a/b. Bizley’s [6] formula was proved by Takdcs [19].

In this paper we shall give the probability distributions of the following random
variables.

(i) 80 number of subscripts r = 1,2,...,a + b for which a, =
= ﬁr - C

(ii) 5,879 number of subscripts r = 1,2,...,a + b for which o, =
= Br— CbUtar—l = ﬂr—l —c—1,

(iii) Sa879 number of subscripts r = 1,2,...,a + b for which «, =
=B —cbute,_y =4, —c+ 1,

(iv) 4,579 number of subscripts r = 1,2,...,a + b for which «, =
=B, —cbuta,_, =f,_, —c—lando, .y = B,y —c+ 1,

(v) 45579 number of subscripts r = 1,2,...,a + b for which «, =

= ﬁr_ Cbutar—l = Br—l —c+ Ianda,H = ﬁr+1 - Cc= 1:

(Vi) 0,579 number of subscripts r = 1,2,...,a + b for which «, =
=B, —cbuta,_y =f,_y —c—1lando,y =fiy —c - 1,

(vii) o9 number of subscripts r = 1,2,...,a + b for which «, =
=B, —cbuta,_; =B,_; —c+lando,y =B,y —c+1,

where ¢ is a non-negative integer. Similarly, we define the random variables 5},3’,,

(0,80, 858, A8, AFO, 0.4 and o, respectively by replacing ¢ by —c in the

above definitions.

2. THE METHOD

Consider a sequence of auxiliary random variables 6y, 0,, ..., 0,,, such that
0, (k =1,2,...,a + b) can acquire only one of the values +1 or —1 in accordance
with the rule:

0. — +1 if the k-th vote is cast for 4,
k™ ) =1 if the k-th vote is cast for B,

andlet Sq = 0, S, = 0, + 0, + ... + 0,
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Then S, denotes the position at the moment x = k of a moving particle performing
a random walk on the y-axis. Thus each vote sequence represents a path from (0, 0)

to (a + b, a — b). We assume that all (a : b) possible different paths are equally

probable. For convenience of writting we introduce the following symbols:

Fas a path from (0, 0) to (¢ + b, a — b).

R™ point a point (k, S,) for which S, = t.

RP(RW) an R® point (k, S;) such that S, _; =t + 1 (S,_; =t — 1).

we® the segment of a path included between two consecutive R® points
with S; < t at the intervening positions.

Fi,. an F,, with j R® points.

Fiy. an F, , with j R points

H;, a path from (0, 0) to (m, n reachmg the height n for the first time

at the m-th step.

N[-..] number of paths of the type ..., e.g.,
m

N[H"] = —(l(m . n)) (by [11, p. 89)).
3. DISTRIBUTION RESULTS

Theorem 1. For a 2 b — ¢,¢c > 0,

9) a+bP{6‘“’—J}—211a b+}+2c—1a+b—J+1‘
a a+b—-j+1 a+c

Proof. To establish (9), consider a vote sequence with 6('” = j. The correspond-
ing path is an F;, .. Let OP,P,... P,Q (Fig. 1) be an F}, __ path with j R©"9
points at Pi(i;, — c) Py(iy, —c¢), ..., and P(ij, —c), say respectively; 0 < iy <
< i, <...<i; < a+ b. Consider this path as divided into three segments, viz.
OP,,P,P;, and P;Q. Reflecting OP, about origin, i.e., replacing (6, 0,, ..., 0;,)
by (=0, —0,,..., —0;) we get an H{ path. In the segment P,P; change the signs
of those 0’s which lie above the line y = —c. Now P, P; consists of (j — 1) W9,
Removing 0; 11,0, 4, ..., and 0; _ ., from the beginning of each W) and then
joining the remaining segments end-to-end, in order, the segment P, P; thus transforms
to an H{j"_li‘_ j+1 Pbath. Reversing the order of the last segment P;Q, i.e., replacing
(01505425 -+ -5 0443) DY (Ouip Oip—ss-.o 0;,41) yields an HZ+,'§+fj path. On
joining these three transformed segments end-to-end, in order, we get finally an

a—b+2c+j—-1
Ha p~5% path.
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Since any one of the (j — 1) W9 can be reflected in the line y = —c to give
an Fj, _. path, there will be 2/~ " paths of the type F} , __ corresponding to a single
H37 5+ 2<%/~ " path. Thus the probability we seek for is

o . a+ b\ . amb4 et o
piog =iy = (1 0) e s,

leading to (9) by [11, p. 89].

Fig. 1.
Theorem 2. Fora = b — ¢, ¢ > 0,
a+b (- a+b
oy 9z = .
(10) ( a )P{“’b 2 Jj} <a+c+j>
Proof. To derive (10), consider a vote sequence with 5,479 = k. The correspond-

ing path is an F&, __ path which can be shown to be in one-to-one correspondence
with an H2 213" 2%*1 path. Let OPP,P, ... P,Q(fig. 2) be an F%, __ path with

Q
/hbla"b)
c \\P/\ I VAN / Vewc

NAEVe N NNk

Fig. 2.

k RC 9 points at Py(iy, —c), P,(iy, —c), ..., and Py (i, —c), say. Let P be the point

(i, S;) such that S; = —c for the first time; 0 < i <i; < i <...< i <a+b.
Consider this path as divided into three segments, viz. OP, PP,, and P,Q. Reflecting
OP about origin, i.e., replacing (6, 05, ..., 0;) by (=0, —0,,..., —0;) we get an
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H¢ path. In the segment PP, change the signs of those 8's which lie above the line
y = —c. Now remove 0., 0;, 44, 0;,44,...,and 0, _ ;. Add (+1) after each
0,0, ..., and 0,. The segment PP, thus transforms to an H;*_, path. Reversing
the order of the last segment P,Q, i.e., replacing (0, 41, 05425 -+ 0asp) bY (O4sps
Opsp—15 -+ 05 +1) and adding (+1) at the end we get an Hi1 1"} path. On joining
these three transformed segments end-to-end, in order, we get finally an H2 5% 2+ 2k+1
path. By reversing the above procedure it may be seen that this transformation

is one-to-one. Thus the probability we seek for is

-1
(11) P =k = (" : b) N[HG T3]

=<a:b>_l[<aijik>_<a+212+ 1)] (by [11, p-89])

whence (10) follows by using the equality

b—c
P{o,377 2 j} = L P{o.3 ) =k} -
K=j

Results (3) and (8) are now simple consequences of (10) as shown below.

Setting k = 0 in (11), replacing ¢ by ¢ and then summing the resulting expression
over t from 0 to ¢ — 1, we get the probability of the event that «, > , — ¢ for
r=1,2,...,a + b. The corresponding path from (0, 0) to (a + b, a — b) will be
such that it does not touch the line y = —c¢. Thus

c—1
Plo,> B, —c for r=1,....,a+ b} =} [(a+b>_

S l\a +t

_( a+b a+ b\!
a+t+1 a ’
which is in agreement with (8).

Setting k = ¢ = 0 in (11), we get:

) — 1
Pla,2 B, for r=1,...,a + b} = a-——b—+—,
. a—+1
which is in agreement with (3).
Now we quote below other results which can be derived similarly by using combina-
torial arguments as used above.

(i) Forazb—c,c>0,

a+b (-0 > a+b
(12) < a )P{a""’ 2J} = a+c+j—1

09 (“EN)rusean = (" ra =) -
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a—b+2+4 a+b+2
a+b+2 a+c+2+1

I G 3 R R
a - m=1 a+b—-—j—m+2

j+m—1 a+b—j—m+2)
. m — 1 a+c+m+1
(15) <a+b>P{J+(_c,_j}__[“’_c_f”ma—b-i—k +j+3m—1
a @b m=0 a+b—j—m+1 '

j+m\fa+b—-j—-—m+1
‘N m a+m+c
(i) Forazb+cc>0,

(16) <a+b>P{5ff})=j}=2j_1a—b+j—l<a+b—j+l>

a a+b-j+1 ?
a+b - > (a+b
> =
a+b +O)> 1 at+b
(15) (2 romzn - (01
a+b (o) _ a—-b+4j"2<a+b+2)
19 Piday” =iy == '
() (a) {,b ]} a+b+2 a+2j
a+b n_a-bt4+2fatb+2
20 P4 =iy =————
(20) (a ) (es” =1} a+b+2 <"+2j+2)
b BN (CA A TE0 Py A S P
(21) ( >P oo =iy= X : '
a m=1 a+b—-j—-—m+2
j+m=1\({a+b—j—m+2
: m—1 a+m
0t b =021 — p 4+ j + 3m + 1
22 P{o}® =j} = '
(22) (a ) S ET T

j+m\fa+b—-—j—m+1
\m a+m+1
We note that results (16)—(22) are independent of c.
(i) Fora = b, ¢ =0,
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(23) (“ + b)p{a'w kb G

a+b—j a
Relations (10), second part of (13), (14), (18), (20) and (22) hold also for ¢ = 0.
Settingj = 0in (23), we get

a-—->

a+b

P{oa, > B, for r=1,2,...,a + b} =

verifying the classical ballot problem (1).
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Souhrn

NEKTERE VYSLEDKY O ROZLOZENICH
NA ZOBECNENYCH PROBLEMECH HLASOVANI{

JAGDISH SARAN, KANWAR SEN

Piedpoklddejme, Ze pfi hlasovani kandiddt 4 dostal a hlast, kandiddt B dostal b
_ b . . <
hlast, a ze vSech a : ) moznych hlasovacich posloupnosti je stejné pradépodob-

nych. Oznaéme «, (resp. B,) pocet hlasti odevzdanych pro 4 (resp. B) mezi r prvnimi
hlasy, r = 1,...,a + b. Jednoduchymi kombinatorickymi metodami se v Elanku
odvozuji pro a = b — ¢ pravdépodobnostni rozlozeni urcitych ndhodnych veli¢in
spojenych s prib&hem hlasovdni. Jde o ndhodné veli€iny rovnajici se poctu indexi
r=1,...,a+ b,prondz(i)o, = B, — ¢, (ii)o, = B, — c,alea,_y = f,_y —c + 1,
(i) o, =P, —¢c, ale tp_y =P,y —c*+1l a o, =p, —ct1, kde ¢ =0,
+1, £2,.... N&které zndmé vysledky Andrého (1887), Takdcse (1963) a jinych
autori jsou jednoduchymi dusledky dokdzanych vét.
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