Previous |  Up |  Next

Article

Keywords:
electrically conducting; bounded three dimensional domain; boundary perfectly conducting; displacement current; Maxwell’s equations; small periodic force; small positive epsilon; locally unique periodic solution
Summary:
This paper deals with a system of equations describing the motion of viscous electrically conducting incompressible fluid in a bounded three dimensional domain whose boundary is perfectly conducting. The displacement current appearing in Maxwell's equations, $\epsilon E_t$ is not neglected. It is proved that for a small periodic force and small positive #\epsilon# there exists a locally unique periodic solution of the investigated system. For $\epsilon \rightarrow 0$, these solutions are shown to convergeto a solution of the simplified (and usually considered) system of equations of magnetohydrodynamics.
References:
[1] N. G. Van Kampen B. U. Felderhof: Theoretical Methods in Plasma Physics. North-Holland Publishing Company - Amsterdam, 1967.
[2] O. A. Ladyženskaja V. A. Solonnikov: Solutions of some non-stationary problems of.magnetohydrodynamics for incompressible fluid. (Russian.) Trudy Mat. Inst. V. A. Steklova, 59 (1960), 115-173. MR 0170130
[3] O. A. Ladyženskaja V. A. Solonnikov: On the principle of linearization and invariant manifolds in problems of magnetohydrodynamics. (Russian.) Zapiski naučnych seminarov LOMI, 38 (1973), 46-93. MR 0377310
[4] O. A. Ladyženskaja: Mathematical Problems of the Dynamics of Viscous Incompressible Liquid. (Russian.) Nauka, Moskva, 1970. MR 0271559
[5] A. Milani: On a singular perturbation problem for the linear Maxwell equations. Quaderni di Matematica, Università di Torino, n° 20, 1980, 11-16. Zbl 0478.35010
[6] A. Milani: On a singular perturbation problem for the Maxwell equations in a multiply connected domain. Rend. Sem. Mat. Univers. Politecn. Torino, 38, 1 (1980), 123-132. MR 0608934 | Zbl 0464.35006
[7] J. A. Shercliff: A Textbook of Magnetohydrodynamics. Pergamon, Oxford 1965. MR 0185961
[8] L. Stupjalis: A nonstationary problem of magnetohydrodynamics. (Russian.) Zapiski naučnych seminarov LOMI, 52 (1975), 175-217. MR 0464896
[9] L. Stupjalis: On solvability of an initial-boundary value problem of magnetohydrodynamics. (Russian.) Zapiski naučnych seminarov LOMÍ, 69 (1977), 219-239. MR 0499834
[10] L. Stupjalis: A nonstationary problem of magnetohydrodynamics in the case of two spatial variables. (Russian.) Trudy Mat. Inst. V. A. Steklova, 147 (1980), 156-168. MR 0573906
Partner of
EuDML logo