Article
Keywords:
electrically conducting; bounded three dimensional domain; boundary perfectly conducting; displacement current; Maxwell’s equations; small periodic force; small positive epsilon; locally unique periodic solution
Summary:
This paper deals with a system of equations describing the motion of viscous electrically conducting incompressible fluid in a bounded three dimensional domain whose boundary is perfectly conducting. The displacement current appearing in Maxwell's equations, $\epsilon E_t$ is not neglected. It is proved that for a small periodic force and small positive #\epsilon# there exists a locally unique periodic solution of the investigated system. For $\epsilon \rightarrow 0$, these solutions are shown to convergeto a solution of the simplified (and usually considered) system of equations of magnetohydrodynamics.
References:
[1] N. G. Van Kampen B. U. Felderhof: Theoretical Methods in Plasma Physics. North-Holland Publishing Company - Amsterdam, 1967.
[2] O. A. Ladyženskaja V. A. Solonnikov:
Solutions of some non-stationary problems of.magnetohydrodynamics for incompressible fluid. (Russian.) Trudy Mat. Inst. V. A. Steklova, 59 (1960), 115-173.
MR 0170130
[3] O. A. Ladyženskaja V. A. Solonnikov:
On the principle of linearization and invariant manifolds in problems of magnetohydrodynamics. (Russian.) Zapiski naučnych seminarov LOMI, 38 (1973), 46-93.
MR 0377310
[4] O. A. Ladyženskaja:
Mathematical Problems of the Dynamics of Viscous Incompressible Liquid. (Russian.) Nauka, Moskva, 1970.
MR 0271559
[5] A. Milani:
On a singular perturbation problem for the linear Maxwell equations. Quaderni di Matematica, Università di Torino, n° 20, 1980, 11-16.
Zbl 0478.35010
[6] A. Milani:
On a singular perturbation problem for the Maxwell equations in a multiply connected domain. Rend. Sem. Mat. Univers. Politecn. Torino, 38, 1 (1980), 123-132.
MR 0608934 |
Zbl 0464.35006
[7] J. A. Shercliff:
A Textbook of Magnetohydrodynamics. Pergamon, Oxford 1965.
MR 0185961
[8] L. Stupjalis:
A nonstationary problem of magnetohydrodynamics. (Russian.) Zapiski naučnych seminarov LOMI, 52 (1975), 175-217.
MR 0464896
[9] L. Stupjalis:
On solvability of an initial-boundary value problem of magnetohydrodynamics. (Russian.) Zapiski naučnych seminarov LOMÍ, 69 (1977), 219-239.
MR 0499834
[10] L. Stupjalis:
A nonstationary problem of magnetohydrodynamics in the case of two spatial variables. (Russian.) Trudy Mat. Inst. V. A. Steklova, 147 (1980), 156-168.
MR 0573906