Previous |  Up |  Next

Article

References:
[1] D. Dikranjan: Sur la minimalité dies produits de groupes topologiques abéliens. C.R. Acad. Sc. Paris t. 299, Série I, No. 8 (1984), 303-306. MR 0761252
[2] R. Frič, F. Zanolin: Remarks on sequential convergence in free groups. Colloq. Math. Soc. János Bollyai, 41. Topology and Applications, Eger (Hungary), 1983, North-Holland, Amsterdam, 1985, 283-291. MR 0863910
[3] R. Frič, F. Zanolin: Coarse convergence groups. Convergence Structures 1984 (Proc. Conf. on Convergence, Bechyně 1984). Akademie-Verlag Berlin, 1985, 107-114. MR 0835476
[4] R. Frič, P. Vojtáš: Diagonal conditions in sequential convergence. Convergence Structures 1984 (Proc. Conf. on Convergence, Bechyně 1984). Akademie-Verlag Berlin, 1985, 77-94. MR 0835474
[5] L. Fuchs: Infinite abelian groups I, II. Academic Press, New York 1970, 1973.
[6] J. Jakubík: On convergence in linear spaces. (Slovak. Russian summary.) Mat.-Fyz. Časopis Sloven. Akad. Vied 6 (1956), 57-67. MR 0084718
[7] V. Koutník: Completeness of sequential convergence groups. Studia Math. 77 (1983), 455-464. DOI 10.4064/sm-77-5-455-464 | MR 0751766
[8] J. Novák: On some problems concerning the convergence spaces and groups. General Topology and its Relations to Modern Analysis and Algebra (Proc. Kanpur Topological Conf., 1968), Academia, Praha 1970, 219-229. MR 0278253
[9] J. Novák: On convergence groups. Czechoslovak Math. J. 20 (1970), 357-374. MR 0263973
[10] J. Novák: On completions of convergence commutative groups. General Topology and its Relations to Modern Analysis and Algebra III. (Proc. Third Prague Topological Sympos., 1971), Academia, Praha 1972, 335-340. MR 0365451
[11] I. Prodanov: Precompact minimal group topologies and p-adic numbers. Annuaire Univ. Sofia Fac. Math. 66 (1971/1972), 249-266. MR 0412323
[12] R. Stephenson: Minimal topological groups. Math. Ann. 142 (1971), 193-195. DOI 10.1007/BF02052870 | MR 0286934 | Zbl 0206.31601
[13] F. Zanolin: Solution of a problem of Josef Novák about convergence groups. Boll. Un. Mat. Ital., (5) 14-A (1977), 375-381. MR 0451220 | Zbl 0352.54017
[14] F. Zanolin: Example of a convergence commutative group which is not separated. Czechoslovak Math. J. 34 (1984), 169-171. MR 0743481 | Zbl 0546.54007
Partner of
EuDML logo