Previous |  Up |  Next

Article

References:
[1] Bhaskara Rao K. P. S., Rao B. V.: Borel spaces. Dissertationes Mathematicae CXC (1981). Zbl 0472.28002
[2] Brown J. B., Cox G. W: Classical theory of totally imperfect spaces. Real Analysis Exchange 7 (1981-2), 185-232. DOI 10.2307/44153408 | MR 0657320
[3] Bzyl W., Jasinski J.: A note on Blackwell spaces. Bull. Acad. Polon. Sci. 31 (1983), 215-217. MR 0750721 | Zbl 0568.28001
[4] Christensen J. P. R.: Topology and Borel Structure. North-Holland Publishing Company, Amsterdam (1974). MR 0348724 | Zbl 0273.28001
[5] Fremlin D.: On Blackwell algebras. (pre-print).
[6] Jasinski J.: On the combinatorial properties of Blackwell spaces. Proc. Amer. Math. Soc. 93 (1985), 657-660. DOI 10.2307/2045540 | MR 0776198 | Zbl 0575.28001
[7] Jasinski J.: On the Blackwell property of Luzin sets. Proc. Amer. Math. Soc. 95(1985), 303--306. DOI 10.2307/2044532 | MR 0801343 | Zbl 0591.28002
[8] Miller A. W.: Special subsets of the real line. Handbook of Set-theoretic Topology. North- Holland Publishing Co. (1984), 201-233. MR 0776624 | Zbl 0588.54035
[9] Riidin M. E.: Martin's Axiom. Handbook of Mathematical Logic. North-Holland Publishing Company (1977), 491-501. MR 0457132
[10] Shortt R. M., Bhaskara Rao K. P. S.: Generalised Lusing sets with the Blackwell property. Fund. Math, (to appear). MR 0883149
[11] Steinhaus H.: Sur les distances des points des ensembles de mesure positive. Fund. Math. 1 (1920), 93-104. DOI 10.4064/fm-1-1-93-104
Partner of
EuDML logo