Previous |  Up |  Next

Article

References:
[1] E. N. Dancer: On the structure of solutions of non-linear eigenvalue problems. Indiana Univ. Math. Journ. 23, (1974), 1069-1076. DOI 10.1512/iumj.1974.23.23087 | MR 0348567 | Zbl 0276.47051
[2] M. Kučera: A new method for obtaining eigenvalues of variational inequalities of the special type. Preliminary communication. Comment. Math. Univ. Carol. 18, (1977), 205 - 210. MR 0435909
[3] M. Kučera: A new method for obtaining eigenvalues of variational inequalities. Branches of eigenvalues of the equation with the penalty in a special case. Časopis pro pěstování matematiky, 104 (1979), 295-310. MR 0543230
[4] M. Kučera: A new method for obtaining eigenvalues of variational inequalities based on bifurcation theory. Časopis pro pěstování matematiky, 104 (1979), 389-411. MR 0553173
[5] M. Kučera: Bifurcation points of variational inequalities. Czechoslovak Math. Journ. 32 (107), (1982), 208-226. MR 0654057
[6] M. Kučera J. Nečas J. Souček: The eigenvalue problem for variational inequalities and a new version of the Ljusternik-Schnirelmann theory. In "Nonlinear Analysis", Academic Press, New York-San Francisco-London 1978. MR 0513782
[7] E. Miersemann: Über höhere Verzweigungspunkte nichtlinearer Variationsungleichungen. Math. Nachr. 85 (1978), 195-213. DOI 10.1002/mana.19780850116 | MR 0517651 | Zbl 0324.49036
[8] E. Miersemann: Höhere Eigenwerte von Variationsungleichungen. To appear in Beiträge zur Analysis. MR 0663272 | Zbl 0475.49016
[9] G. T. Whyburn: Topological Analysis. Princeton Univ. Press, Princeton, N.J., 1958. MR 0099642 | Zbl 0080.15903
Partner of
EuDML logo