Previous |  Up |  Next

Article

References:
[1] W. G. Bade: Unbounded spectral operators. Pacific J. Math. 4 (1954), 373 - 392. DOI 10.2140/pjm.1954.4.373 | MR 0063566 | Zbl 0056.34801
[2] R. G. Bartle N. Dunford, J. T. Schwartz: Weak compactness and vector measures. Canadian J. Math. 7 (1955), 289-305. DOI 10.4153/CJM-1955-032-1 | MR 0070050
[3] N. Dunford: Spectral operators. Pacific J. Math. 4 (1954), 321 - 354. DOI 10.2140/pjm.1954.4.321 | MR 0063563 | Zbl 0056.34601
[4] N. Dunford, J. T. Schwartz: Linear Operators. Part I. General theory. Interscience Publ. New York 1958. MR 1009162
[5] S. R. Foguel: Sums and products of commuting spectral operators. Ark. Mat. 3 (1957), 449-461. MR 0104154
[6] P. R. Halmos: Measure Theory. Van Nostrand, New York, 1950. MR 0033869 | Zbl 0040.16802
[7] S. Kakutani: An example concerning uniform boundedness of spectral measures. Pacific J. Math. 4 (1954), 363-372. DOI 10.2140/pjm.1954.4.363 | MR 0063565 | Zbl 0056.34702
[8] S. Kantorovitz: On the characterization of spectral operators. Trans. Amer. Math. Soc. III (1964), 152-181. DOI 10.1090/S0002-9947-1964-0160115-5 | MR 0160115 | Zbl 0139.08702
[9] I. Kluvánek: Miery v kartézskych súčinoch. Čas. pěst. mat. 92 (1967), 282-286. MR 0219692
[10] С. A. McCarthy: Commuting Boolean algebras of projections. Pacific J. Math. 11 (1961), 295-307. DOI 10.2140/pjm.1961.11.295 | MR 0125448 | Zbl 0107.09502
[11] С A. McCarthy: Commuting Boolean algebras of projections. II. Boundedness in $L\sb p$. Proc. Amer. Math. Soc. 15 (1964), 781-787. MR 0173947 | Zbl 0127.33003
[12] J. Wermer: Commuting spectral measures on Hilbert space. Pacific J. Math. 4 (1954), 355-361. DOI 10.2140/pjm.1954.4.355 | MR 0063564 | Zbl 0056.34701
Partner of
EuDML logo