Author: Kučera, Jan
-
Gomez-Wulschner, Claudia; Kučera, Jan:
Sequentially complete inductive limits and regularity.
(English).
Czechoslovak Mathematical Journal,
vol. 54
(2004),
issue 3,
pp. 697-699
-
Bosch, Carlos; Kučera, Jan:
Sequential completeness and regularityof inductive limits of webbed spaces.
(English).
Czechoslovak Mathematical Journal,
vol. 52
(2002),
issue 2,
pp. 329-332
-
Kučera, Jan:
Sequential completeness of LF-spaces.
(English).
Czechoslovak Mathematical Journal,
vol. 51
(2001),
issue 1,
pp. 181-183
-
Bosch, Carlos; Kučera, Jan:
On regularity of inductive limits.
(English).
Czechoslovak Mathematical Journal,
vol. 45
(1995),
issue 1,
pp. 171-173
-
Bosch, Carlos; Kučera, Jan:
Closed bounded sets in inductive limits of $\Cal K$-spaces.
(English).
Czechoslovak Mathematical Journal,
vol. 43
(1993),
issue 2,
pp. 221-223
-
Kučera, Jan; McKennon, Kelly:
Preservation of fast completeness under inductive limits.
(English).
Czechoslovak Mathematical Journal,
vol. 42
(1992),
issue 1,
pp. 15-18
-
Kučera, Jan:
On representation of temperate distributions.
(English).
Czechoslovak Mathematical Journal,
vol. 22
(1972),
issue 2,
pp. 191-194
-
Kučera, Jan:
On multipliers of temperate distributions.
(English).
Czechoslovak Mathematical Journal,
vol. 21
(1971),
issue 4,
pp. 610-618
-
Kučera, Jan:
On accessibility of bilinear systems.
(English).
Czechoslovak Mathematical Journal,
vol. 20
(1970),
issue 1,
pp. 160-168
-
Kučera, Jan:
On the accessibility of control system $\dot x \in Q(x)$.
(English).
Czechoslovak Mathematical Journal,
vol. 20
(1970),
issue 1,
pp. 122-129
-
Kučera, Jan:
Fourier $L_2$-transform of distributions.
(English).
Czechoslovak Mathematical Journal,
vol. 19
(1969),
issue 1,
pp. 143-153
-
Kučera, Jan:
Laplace $L_2$-transform of distributions.
(English).
Czechoslovak Mathematical Journal,
vol. 19
(1969),
issue 1,
pp. 181-189
-
Kučera, Jan:
Multiple Laplace integral.
(English).
Czechoslovak Mathematical Journal,
vol. 18
(1968),
issue 4,
pp. 666-674
-
Kučera, Jan:
Solution in large of control problem $\dot x=(Au+Bv)x$.
(English).
Czechoslovak Mathematical Journal,
vol. 17
(1967),
issue 1,
pp. 91-96
-
Kučera, Jan:
Title: Solution in large of control problem $\dot x=(A(1-u)+Bu)x$.
(English).
Czechoslovak Mathematical Journal,
vol. 16
(1966),
issue 4,
pp. 600-623
Partner of