Previous |  Up |  Next

Article

Title: Local equivalence of some maximally symmetric $(2,3,5)$-distributions II (English)
Author: Randall, Matthew
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 61
Issue: 1
Year: 2025
Pages: 9-41
Summary lang: English
.
Category: math
.
Summary: We show the change of coordinates that maps the maximally symmetric $(2,3,5)$-distribution given by solutions to the $k=\frac{2}{3}$ and $k=\frac{3}{2}$ generalised Chazy equation to the flat Cartan distribution. This establishes the local equivalence between the maximally symmetric $k=\frac{2}{3}$ and $k=\frac{3}{2}$ generalised Chazy distribution and the flat Cartan or Hilbert-Cartan distribution. We give the set of vector fields parametrised by solutions to the $k=\frac{2}{3}$ and $k=\frac{3}{2}$ generalised Chazy equation and the corresponding Ricci-flat conformal scale that bracket-generate to give the split real form of $\mathfrak{g}_2$. (English)
Keyword: (2,3,5)-distributions
Keyword: generalised Chazy equation
MSC: 34A05
MSC: 34A34
MSC: 58A15
MSC: 58A17
DOI: 10.5817/AM2025-1-9
.
Date available: 2025-03-24T13:07:06Z
Last updated: 2025-03-24
Stable URL: http://hdl.handle.net/10338.dmlcz/152917
.
Reference: [1] Ablowitz, M.J., Chakravarty, S., Halburd, R.: The generalized Chazy equation and Schwarzian triangle functions.Asian J. Math. 2 (1998), 1–6. MR 1734122, 10.4310/AJM.1998.v2.n4.a1
Reference: [2] Ablowitz, M.J., Chakravarty, S., Halburd, R.: The generalized Chazy equation from the self-duality equations.Stud. Appl. Math. 103 (1999), 75–88. MR 1697568, 10.1111/1467-9590.00121
Reference: [3] An, D., Nurowski, P.: Twistor space for rolling bodies.Comm. Math. Phys. 326 (2) (2014), 393–414. Zbl 1296.53100, MR 3165459, 10.1007/s00220-013-1839-2
Reference: [4] An, D., Nurowski, P.: Symmetric (2,3,5) distributions, an interesting ODE of 7th order and Plebański metric.J. Geom. Phys. 126 (2018), 93–100. MR 3766469, 10.1016/j.geomphys.2018.01.009
Reference: [5] Baez, J.C., Huerta, J.: $G_2$ and the rolling ball.Trans. Amer. Math. Soc. 366 (10) (2014), 5257–5293. MR 3240924, 10.1090/S0002-9947-2014-05977-1
Reference: [6] Bor, G., Montgomery, R.: $G_2$ and the rolling distribution.Enseign. Math. (2) 55 (1–2) (2009), 157–196. Zbl 1251.70008, MR 2541507, 10.4171/lem/55-1-8
Reference: [7] Cartan, E.: Sur la structure des groupes simples finis et continus.C.R. Acad. Sci. Paris 116 (1893), 784–786.
Reference: [8] Cartan, E.: Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre.Ann. Sci. Éc. Norm. Supér. (3) 27 (1910), 109–192. MR 1509120, 10.24033/asens.618
Reference: [9] Chazy, J.: Sur les équations différentielles dont l’intégrale générale est uniforme et admet des singularités essentielles mobiles.C.R. Acad. Sci. Paris 149 (1909), 563–565.
Reference: [10] Chazy, J.: Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale a ses points critiques fixes.Acta Math. 34 (1911), 317–385. MR 1555070, 10.1007/BF02393131
Reference: [11] Clarkson, P.A., Olver, P.J.: Symmetry and the Chazy Equation.J. Differential Equations 124 (1) (1996), 225–246. MR 1368067, 10.1006/jdeq.1996.0008
Reference: [12] Doubrov, B., Kruglikov, B.: On the models of submaximal symmetric rank 2 distributions in 5D.Differential Geom. Appl. 35 (suppl.) (2014), 314–322. MR 3254311, 10.1016/j.difgeo.2014.06.008
Reference: [13] Engel, F.: Sur un group simple à quatorze paramètres.C.R. Acad. Sci. Paris 116 (1893), 786–788.
Reference: [14] Engel, F.: Zwei merkwürdige Gruppen des Raums von fünf Dimensionen.Jahresbericht der Deutschen Mathematiker-Vereinigung 8 (1900), 196–198.
Reference: [15] Halphen, G.H.: Sur les invariants des équations différentielles linéaires du quatrième ordre.Acta Math. 3 (1883), 325–380, doi:10.1007/BF02422456. MR 1554628, 10.1007/BF02422456
Reference: [16] Krichever, I.M.: Generalized elliptic genera and Baker-Akhiezer functions.Mat. Zametki 47 (2) (1990), 34–45 (Transl. Math. Notes 47, no. 1–2, (1990), 132–142). MR 1048541
Reference: [17] Maier, R.S.: Lamé polynomials, hyperelliptic reductions and Lamé band structure.Philos. Trans. Roy. Soc. A 366 (2008), 1115–1153. MR 2377687
Reference: [18] Nurowski, P.: Differential equations and conformal structures.J. Geom. Phys. 55 (2005), 19–49. Zbl 1082.53024, MR 2157414
Reference: [19] Randall, M.: Local equivalence of some maximally symmetric $(2,3,5)$-distributions I.arxiv:2108.04599.
Reference: [20] Randall, M.: Flat (2,3,5)-distributions and Chazy’s equations.SIGMA 12 (2016), 029. MR 3475620
Reference: [21] Randall, M.: Automorphisms and transformations of solutions to the generalised Chazy equation for various parameters.J. Differential Equations 268 (12) (2020), 7998–8025. MR 4079026
Reference: [22] Randall, M.: Schwarz triangle functions and duality for certain parameters of the generalised Chazy equation.New Zealand J. Math. 50 (2020), 181–205. MR 4216442
Reference: [23] Randall, M.: Automorphism of solutions to Ramanujan’s differential equations and other results.Kyushu J. Math. 75 (1) (2021), 77–94. MR 4272372
Reference: [24] Randall, M.: Nurowski’s conformal class of a maximally symmetric (2,3,5)-distribution and its Ricci-flat representatives.J. Nonlinear Math. Phys. 28 (1) (2021), 1–13. MR 4250810
Reference: [25] Randall, M.: A Monge normal form for the rolling distribution.Proc. Amer. Math. Soc. 151 (2) (2023), 853–863. MR 4520032
Reference: [26] Randall, M.: Local equivalence of some maximally symmetric rolling distributions and SU(2) Pfaffian systems.Hokkaido Math. J. 52 (1) (2023), 97–128. MR 4612637
Reference: [27] Strazzullo, F.: Symmetry Analysis of General Rank-3 Pfaffian Systems in Five Variables.Ph.D. thesis, Utah State University, 2009. MR 2717829
Reference: [28] Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis.4th ed., Cambridge Mathematical Library, Cambridge University Press, 1996. Zbl 0951.30002, MR 1424469
Reference: [29] Willse, T.: Highly symmetric 2-plane fields on 5-manifolds and Heisenberg 5-group holonomy.Differential Geom. Appl. 33 (suppl.) (2014), 81–111. MR 3159952
Reference: [30] Willse, T.: Cartan’s incomplete classification and an explicit ambient metric of holonomy $G_2^*$.Eur. J. Math. 4 (2) (2018), 622–638. MR 3799160
.

Files

Files Size Format View
ArchMathRetro_061-2025-1_2.pdf 623.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo