Previous |  Up |  Next

Article

Keywords:
(2,3,5)-distributions; generalised Chazy equation
Summary:
We show the change of coordinates that maps the maximally symmetric $(2,3,5)$-distribution given by solutions to the $k=\frac{2}{3}$ and $k=\frac{3}{2}$ generalised Chazy equation to the flat Cartan distribution. This establishes the local equivalence between the maximally symmetric $k=\frac{2}{3}$ and $k=\frac{3}{2}$ generalised Chazy distribution and the flat Cartan or Hilbert-Cartan distribution. We give the set of vector fields parametrised by solutions to the $k=\frac{2}{3}$ and $k=\frac{3}{2}$ generalised Chazy equation and the corresponding Ricci-flat conformal scale that bracket-generate to give the split real form of $\mathfrak{g}_2$.
References:
[1] Ablowitz, M.J., Chakravarty, S., Halburd, R.: The generalized Chazy equation and Schwarzian triangle functions. Asian J. Math. 2 (1998), 1–6. DOI 10.4310/AJM.1998.v2.n4.a1 | MR 1734122
[2] Ablowitz, M.J., Chakravarty, S., Halburd, R.: The generalized Chazy equation from the self-duality equations. Stud. Appl. Math. 103 (1999), 75–88. DOI 10.1111/1467-9590.00121 | MR 1697568
[3] An, D., Nurowski, P.: Twistor space for rolling bodies. Comm. Math. Phys. 326 (2) (2014), 393–414. DOI 10.1007/s00220-013-1839-2 | MR 3165459 | Zbl 1296.53100
[4] An, D., Nurowski, P.: Symmetric (2,3,5) distributions, an interesting ODE of 7th order and Plebański metric. J. Geom. Phys. 126 (2018), 93–100. DOI 10.1016/j.geomphys.2018.01.009 | MR 3766469
[5] Baez, J.C., Huerta, J.: $G_2$ and the rolling ball. Trans. Amer. Math. Soc. 366 (10) (2014), 5257–5293. DOI 10.1090/S0002-9947-2014-05977-1 | MR 3240924
[6] Bor, G., Montgomery, R.: $G_2$ and the rolling distribution. Enseign. Math. (2) 55 (1–2) (2009), 157–196. DOI 10.4171/lem/55-1-8 | MR 2541507 | Zbl 1251.70008
[7] Cartan, E.: Sur la structure des groupes simples finis et continus. C.R. Acad. Sci. Paris 116 (1893), 784–786.
[8] Cartan, E.: Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre. Ann. Sci. Éc. Norm. Supér. (3) 27 (1910), 109–192. DOI 10.24033/asens.618 | MR 1509120
[9] Chazy, J.: Sur les équations différentielles dont l’intégrale générale est uniforme et admet des singularités essentielles mobiles. C.R. Acad. Sci. Paris 149 (1909), 563–565.
[10] Chazy, J.: Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale a ses points critiques fixes. Acta Math. 34 (1911), 317–385. DOI 10.1007/BF02393131 | MR 1555070
[11] Clarkson, P.A., Olver, P.J.: Symmetry and the Chazy Equation. J. Differential Equations 124 (1) (1996), 225–246. DOI 10.1006/jdeq.1996.0008 | MR 1368067
[12] Doubrov, B., Kruglikov, B.: On the models of submaximal symmetric rank 2 distributions in 5D. Differential Geom. Appl. 35 (suppl.) (2014), 314–322. DOI 10.1016/j.difgeo.2014.06.008 | MR 3254311
[13] Engel, F.: Sur un group simple à quatorze paramètres. C.R. Acad. Sci. Paris 116 (1893), 786–788.
[14] Engel, F.: Zwei merkwürdige Gruppen des Raums von fünf Dimensionen. Jahresbericht der Deutschen Mathematiker-Vereinigung 8 (1900), 196–198.
[15] Halphen, G.H.: Sur les invariants des équations différentielles linéaires du quatrième ordre. Acta Math. 3 (1883), 325–380, doi:10.1007/BF02422456. DOI 10.1007/BF02422456 | MR 1554628
[16] Krichever, I.M.: Generalized elliptic genera and Baker-Akhiezer functions. Mat. Zametki 47 (2) (1990), 34–45 (Transl. Math. Notes 47, no. 1–2, (1990), 132–142). MR 1048541
[17] Maier, R.S.: Lamé polynomials, hyperelliptic reductions and Lamé band structure. Philos. Trans. Roy. Soc. A 366 (2008), 1115–1153. MR 2377687
[18] Nurowski, P.: Differential equations and conformal structures. J. Geom. Phys. 55 (2005), 19–49. MR 2157414 | Zbl 1082.53024
[19] Randall, M.: Local equivalence of some maximally symmetric $(2,3,5)$-distributions I. arxiv:2108.04599.
[20] Randall, M.: Flat (2,3,5)-distributions and Chazy’s equations. SIGMA 12 (2016), 029. MR 3475620
[21] Randall, M.: Automorphisms and transformations of solutions to the generalised Chazy equation for various parameters. J. Differential Equations 268 (12) (2020), 7998–8025. MR 4079026
[22] Randall, M.: Schwarz triangle functions and duality for certain parameters of the generalised Chazy equation. New Zealand J. Math. 50 (2020), 181–205. MR 4216442
[23] Randall, M.: Automorphism of solutions to Ramanujan’s differential equations and other results. Kyushu J. Math. 75 (1) (2021), 77–94. MR 4272372
[24] Randall, M.: Nurowski’s conformal class of a maximally symmetric (2,3,5)-distribution and its Ricci-flat representatives. J. Nonlinear Math. Phys. 28 (1) (2021), 1–13. MR 4250810
[25] Randall, M.: A Monge normal form for the rolling distribution. Proc. Amer. Math. Soc. 151 (2) (2023), 853–863. MR 4520032
[26] Randall, M.: Local equivalence of some maximally symmetric rolling distributions and SU(2) Pfaffian systems. Hokkaido Math. J. 52 (1) (2023), 97–128. MR 4612637
[27] Strazzullo, F.: Symmetry Analysis of General Rank-3 Pfaffian Systems in Five Variables. Ph.D. thesis, Utah State University, 2009. MR 2717829
[28] Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. 4th ed., Cambridge Mathematical Library, Cambridge University Press, 1996. MR 1424469 | Zbl 0951.30002
[29] Willse, T.: Highly symmetric 2-plane fields on 5-manifolds and Heisenberg 5-group holonomy. Differential Geom. Appl. 33 (suppl.) (2014), 81–111. MR 3159952
[30] Willse, T.: Cartan’s incomplete classification and an explicit ambient metric of holonomy $G_2^*$. Eur. J. Math. 4 (2) (2018), 622–638. MR 3799160
Partner of
EuDML logo