[1] Adams, R. A.:
Sobolev Spaces. Pure and Applied Mathematics 65. Academic Press, New York (1975).
MR 0450957 |
Zbl 0314.46030
[2] Antonietti, P. F., Bonetti, S., Botti, M.:
Discontinuous Galerkin approximation of the fully coupled thermo-poroelastic problem. SIAM J. Sci. Comput. 45 (2023), A621--A645.
DOI 10.1137/22M149874 |
MR 4579739 |
Zbl 1529.65052
[5] al., S. Balay et: PETSc Users Manual. Technical Report ANL-95/11-Revision 3.14. Argonne National Laboratory, Lemont (2020).
[6] Balay, S., Gropp, W. D., McInnes, L. C., Smith, B. F.:
Efficient management of parallelism in object-oriented numerical software libraries. Modern Software Tools in Scientific Computing Birkhäuser, Boston (1997), 163-202.
DOI 10.1007/978-1-4612-1986-6_8 |
MR 1452877 |
Zbl 0882.65154
[10] Brun, M. K., Ahmed, E., Berre, I., Nordbottem, J. M., Radu, F. A.:
Monolithic and splitting solution schemes for fully coupled quasi-static thermo-poroelasticity with nonlinear convective transport. Comput. Math. Appl. 80 (2020), 1964-1984.
DOI 10.1016/j.camwa.2020.08.022 |
MR 4146798 |
Zbl 1451.74204
[11] Brun, M. K., Ahmed, E., Nordbottem, J. M., Radu, F. A.:
Well-posedness of the fully coupled quasi-static thermo-poroelastic equations with nonlinear convective transport. J. Math. Anal. Appl. 471 (2019), 239-266.
DOI 10.1016/j.jmaa.2018.10.074 |
MR 3906323 |
Zbl 1457.74055
[12] Brun, M. K., Berre, I., Nordbottem, J. M., Radu, F. A.:
Upscaling of the coupling of hydromechanical and thermal processes in a quasi-static poroelastic medium. Transp. Porous Media 124 (2018), 137-158.
DOI 10.1007/s11242-018-1056-8 |
MR 3825656
[13] J. Douglas, Jr., T. Dupont:
Interior penalty procedures for elliptic and parabolic Galerkin methods. Computing Methods in Applied Sciences Lecture Notes in Physics 58. Springer, Berlin (1976), 207-216.
DOI 10.1007/BFb0120591 |
MR 0440955
[15] Girault, V., Rivière, B.:
DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal. 47 (2009), 2052-2089.
DOI 10.1137/070686081 |
MR 2519594 |
Zbl 1406.76082
[19] Masri, R., Shen, B., Rivière, B.:
Discontinuous Galerkin approximations to elliptic and parabolic problems with a Dirac line source. ESAIM, Math. Model. Numer. Anal. 57 (2023), 585-620.
DOI 10.1051/m2an/2022095 |
MR 4565982 |
Zbl 1514.65135
[28] Terzaghi, K.: Erdbaumechanik auf bodenphysikalischer Grundlage. Deuticke, Leipzig (1925), German \99999JFM99999 51.0655.07.
[30] Wheeler, M. F.:
A priori $L_2$ error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973), 723-759.
DOI 10.1137/0710062 |
MR 0351124 |
Zbl 0232.35060
[32] Yang, X., Zhao, W., Zhao, W.:
Strong optimal error estimates of discontinuous Galerkin method for multiplicative noise driving nonlinear SPDEs. Numer. Methods Partial Differ. Equations 39 (2023), 2073-2095.
DOI 10.1002/num.22958 |
MR 4570537 |
Zbl 07776998
[34] Zhang, J., Rui, H.:
A coupling of Galerkin and mixed finite element methods for the quasi-static thermo-poroelasticity with nonlinear convective transport. J. Comput. Appl. Math. 441 (2024), Article ID 115672, 17 pages.
DOI 10.1016/j.cam.2023.115672 |
MR 4668322 |
Zbl 1537.65143