[1] Alonso, P., Flores-Becerra, G., Vidal, A. M.: Sequential and parallel algorithms for the inverse Toeplitz singular value problem. Proceedings of the 2006 International Conference on Scientific Computing, CSC 2006 CSREA Press, Las Vegas (2006), 91-96.
[2] Bai, Z.-J., Chu, D., Sun, D.:
A dual optimization approach to inverse quadratic eigenvalue problems with partial eigenstructure. SIAM J. Sci. Comput. 29 (2007), 2531-2561.
DOI 10.1137/060656346 |
MR 2357626 |
Zbl 1154.65312
[11] Flores-Becerra, G., Garcia, V. M., Vidal, A. M.:
Parallelization and comparison of local convergent algorithms for solving the inverse additive singular value problem. WSEAS Trans. Math. 5 (2006), 81-88.
MR 2194662
[13] Friedland, S., Nocedal, J., Overton, M. L.:
The formulation and analysis of numerical methods for inverse eigenvalue problems. SIAM. J. Numer. Anal. 24 (1987), 634-667.
DOI 10.1137/0724043 |
MR 0888754 |
Zbl 0622.65030
[19] Politi, T.:
A discrete approach for the inverse singular value problem in some quadratic group. Computational science -- ICCS 2003 Lecture Notes in Computer Science 2658. Springer, Berlin (2003), 121-130.
DOI 10.1007/3-540-44862-4_14 |
MR 2088389 |
Zbl 1147.65306
[24] Saunders, C. S., Hu, J., Christoffersen, C. E., Steer, M. B.:
Inverse singular value method for enforcing passivity in reduced-order models of distributed structures for transient and steady-state simulation. IEEE Trans. Microwave Theory Tech. 59 (2011), 837-847.
DOI 10.1109/TMTT.2011.2108311
[29] Xu, S.-F.:
An Introduction to Inverse Algebraic Eigenvalue Problems. Peking University Press, Peking (1998).
MR 1682124 |
Zbl 0927.65057