Previous |  Up |  Next

Article

Title: Quantized semisimple Lie groups (English)
Author: Fioresi, Rita
Author: Yuncken, Robert
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 60
Issue: 5
Year: 2024
Pages: 311-349
Summary lang: English
.
Category: math
.
Summary: The goal of this expository paper is to give a quick introduction to $q$-deformations of semisimple Lie groups. We discuss principally the rank one examples of $\mathcal{U}_q(\mathfrak{sl}_2)$, $\mathcal{O}(\mathrm{SU}_q(2))$, $\mathcal{D}(\mathrm{SL}_q(2,\mathbb{C}))$ and related algebras. We treat quantized enveloping algebras, representations of $\mathcal{U}_q(\mathfrak{sl}_2)$, generalities on Hopf algebras and quantum groups, $*$-structures, quantized algebras of functions on $q$-deformed compact semisimple groups, the Peter-Weyl theorem, $*$-Hopf algebras associated to complex semisimple Lie groups and the Drinfeld double, representations of $\mathrm{SL}_q(2,\mathbb{C})$, the Plancherel formula for $\mathrm{SL}_q(2,\mathbb{C})$. This exposition is expanding the material treated in a series of lectures given by the second author at the CaLISTA CA 21100 Training School, “Quantum Groups and Noncommutative Geometry in Prague” in 2023. (English)
Keyword: quantum groups
Keyword: representation theory
Keyword: semisimple Lie algebras
MSC: 16T20
MSC: 17B37
MSC: 46L67
DOI: 10.5817/AM2024-5-311
.
Date available: 2024-12-13T18:47:55Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152655
.
Reference: [1] Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Differential operators on the base affine space and a study of ${\mathfrak{g}}$-modules.Halsted Press [John Wiley & Sons, Inc.], New York-Toronto, Ont., 1975, 21–64. MR 0578996
Reference: [2] Buffenoir, E., Roche, Ph.: Harmonic analysis on the quantum Lorentz group.Comm. Math. Phys. 207 (3) (1999), 499–555. MR 1727241, 10.1007/s002200050736
Reference: [3] Čap, A., Slovák, J., Souček, V.: Bernstein-Gelfand-Gelfand sequence.Ann. of Math. (2) 154 (1) (2001), 97–113. MR 1847589, 10.2307/3062111
Reference: [4] De Commer, K.: On a correspondence between ${\rm SU}_q(2),\ \widetilde{E}_q(2)$ and $\widetilde{\rm SU}_q(1,1)$.Comm. Math. Phys. 304 (1) (2011), 187–228. MR 2793934, 10.1007/s00220-011-1208-y
Reference: [5] De Commer, K., Dzokou Talla, J.R.: Invariant integrals on coideals and their drinfeld doubles.arXiv:2112.07476 [math.QA], 2021. MR 4776189
Reference: [6] De Commer, K., Dzokou Talla, J.R.: Quantum $sl(2,\mathbb{R})$ and its irreducible representations.arXiv:2107.04258 [math.QA], 2021. MR 4750927
Reference: [7] Dixmier, J.: Enveloping algebras.Grad. Stud. Math., vol. 11, Providence, RI: AMS, American Mathematical Society, 1996. MR 1393197, 10.1090/gsm/011/02
Reference: [8] Drinfel’d, V.G.: Quantum groups.Proc. Int. Congr. Math., vol. 1, Berkeley/Calif 1986, 1987, pp. 798–820. MR 0934283
Reference: [9] Drinfel’d, V.G.: Quantum groups.Journal of Soviet Mathematics 41 92) (1988), 898–915. MR 0869575, 10.1007/BF01247086
Reference: [10] Faddeev, L.D., Reshetikhin, N.Yu., Takhtadzhan, L.A.: Quantization of Lie groups and Lie algebras.Algebraic Analysis 1 (1989), 129–139, Dedicated to Prof. Mikio Sato on the Occas. of his Sixtieth Birthday. MR 1015339
Reference: [11] Fioresi, R., Lledó, M.A.: The Minkowski and conformal superspaces. The classical and quantum descriptions.Hackensack, NJ: World Scientific, 2015. MR 3328668
Reference: [12] Gavarini, F.: The global quantum duality principle.J. Reine Angew. Math. 612 (2007), 17–33. MR 2364072
Reference: [13] Heckenberger, I., Kolb, S.: On the Bernstein-Gelfand-Gelfand resolution for Kac-Moody algebras and quantized enveloping algebras.Transform. Groups 12 (4) (2007), 647–655. MR 2365438, 10.1007/s00031-007-0059-2
Reference: [14] Heckenberger, I., Kolb, S.: Differential forms via the Bernstein-Gelfand-Gelfand resolution for quantized irreducible flag manifolds.J. Geom. Phys. 57 (11) (2007), 2316–2344. MR 2360244, 10.1016/j.geomphys.2007.07.005
Reference: [15] Helgason, S.: Differential geometry, Lie groups, and symmetric spaces.Grad. Stud. Math., vol. 34, Providence, RI: American Mathematical Society (AMS), 2001, reprint with corrections of the 1978 original edition. MR 1834454, 10.1090/gsm/034
Reference: [16] Jimbo, M.: A $q$-analogue of $U(\mathfrak{gl}(N+1))$, Hecke algebra, and the Yang-Baxter equation.Lett. Math. Phys. 11 (1986), 247–252. MR 0841713, 10.1007/BF00400222
Reference: [17] Joseph, A.: Quantum groups and their primitive ideals.Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer Verlag, Berlin, 1995. MR 1315966
Reference: [18] Kassel, Ch.: Quantum groups.Grad. Texts Math., vol. 155, New York, NY: Springer Verlag, 1995. MR 1321145
Reference: [19] Klimyk, A., Schmüdgen, K.: Quantum groups and their representations.Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997. MR 1492989
Reference: [20] Knapp, A.W.: Lie groups beyond an introduction.2nd ed., Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1920389
Reference: [21] Koelink, E., Kustermans, J.: A locally compact quantum group analogue of the normalizer of $\rm SU(1,1)$ in ${\rm SL}(2,\mathbb{C})$.Comm. Math. Phys. 233 (2) (2003), 231–296. MR 1962042, 10.1007/s00220-002-0736-x
Reference: [22] Kulish, P.P., Reshetikhin, N.Yu.: Quantum linear problem for the sine-gordon equation and higher representations.Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 101 (1981), 101–110. MR 0623928
Reference: [23] Montgomery, S.: Hopf algebras and their actions on rings.Reg. Conf. Ser. Math., vol. 82, Providence, RI: American Mathematical Society, 1993, Expanded version of ten lectures given at the CBMS Conference on Hopf algebras and their actions on rings, which took place at DePaul University in Chicago, USA, August 10-14, 1992. MR 1243637
Reference: [24] Ó Buachalla, R., Somberg, P.: Lusztig’s quantum root vectors and a Dolbeault complex for the $A$-series full quantum flag manifolds.arXiv:2312.13493 [math.QA], 2023.
Reference: [25] Podleś, P., Woronowicz, S.L.: Quantum deformation of Lorentz group.Comm. Math. Phys. 130 (2) (1990), 381–431. MR 1059324, 10.1007/BF02473358
Reference: [26] Sklyanin, E.K.: On an algebra generated by quadratic relations.Uspekhi Mat. Nauk 40 (1985), 214.
Reference: [27] Van Daele, A.: Multiplier Hopf algebras.Trans. Amer. Math. Soc. 342 (2) (1994), 917–932. MR 1220906, 10.1090/S0002-9947-1994-1220906-5
Reference: [28] Van Daele, A.: An algebraic framework for group duality.Adv. Math. 140 (2) (1998), 323–366. MR 1658585, 10.1006/aima.1998.1775
Reference: [29] Varadarajan, V.S.: Lie groups, Lie algebras, and their representations.Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. MR 0376938
Reference: [30] Voigt, Ch., Yuncken, R.: The plancherel formula for complex semisimple quantum groups.Ann. Sci. Éc. Norm. Sup. (to appear), https://arxiv.org/abs/1906.02672, 2019. MR 4637134
Reference: [31] Voigt, Ch., Yuncken, R.: Equivariant Fredholm modules for the full quantum flag manifold of ${\rm SU}_q(3)$.Doc. Math. 20 (2015), 433–490. MR 3398718, 10.4171/dm/495
Reference: [32] Voigt, Ch., Yuncken, R.: Complex semisimple quantum groups and representation theory.Lect. Notes in Math., Springer, Cham, 2020. MR 4162277
Reference: [33] Woronowicz, S.L.: Compact matrix pseudogroups.Comm. Math. Phys. 111 (4) (1987), 613–665. MR 0901157, 10.1007/BF01219077
Reference: [34] Woronowicz, S.L.: Twisted ${\rm SU}(2)$ group. An example of a noncommutative differential calculus.Publ. Res. Inst. Math. Sci. 23 (1) (1987), 117–181. MR 0890482, 10.2977/prims/1195176848
.

Files

Files Size Format View
ArchMathRetro_060-2024-5_3.pdf 749.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo