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QUANTIZED SEMISIMPLE LIE GROUPS

Rita Fioresi,1,2 and Robert Yuncken3

Abstract. The goal of this expository paper is to give a quick introduction
to q-deformations of semisimple Lie groups. We discuss principally the rank
one examples of Uq(sl2), O(SUq(2)), D(SLq(2,C)) and related algebras.

We treat quantized enveloping algebras, representations of Uq(sl2), generali-
ties on Hopf algebras and quantum groups, ∗-structures, quantized algebras of
functions on q-deformed compact semisimple groups, the Peter-Weyl theorem,
∗-Hopf algebras associated to complex semisimple Lie groups and the Drinfeld
double, representations of SLq(2,C), the Plancherel formula for SLq(2,C).

This exposition is expanding the material treated in a series of lectures
given by the second author at the CaLISTA CA 21100 Training School,
“Quantum Groups and Noncommutative Geometry in Prague” in 2023.

1. Introduction

The purpose of this work is to give a quick and basic introduction to the
quantization of semisimple Lie groups, specifically compact and complex semisimple
Lie groups, from the point of view of unitary representation theory.

It is an extraordinary fact that the simple Lie algebras over C can be completely
classified. The complete list consists of:
• four infinite families, denoted An, Bn, Cn and Dn (n ∈ N), corresponding

to the classical matrix groups SL(n + 1,C), SO(2n + 1,C), Sp(n,C) and
SO(2n,C), respectively,

• five exceptional Lie algebras, corresponding to the exceptional simple Lie
groups denoted E6, E7, E8, F4 and G2.

In the 1980s, Russian mathematical physicists discovered that the universal
enveloping algebra of sl2(C) admits a q-deformation, or quantization, as a Hopf
algebra Uq(sl2), with q ∈ C× being a complex parameter [22, 26]. This led to an
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explosion of discoveries of quantum groups, most notably the quantized envelo-
ping algebras of Drinfeld and Jimbo [8, 9, 16], and then the quantized algebras
of functions on matrix groups of Reshetikhin, Takhtajan and Faddeev [10] and
Woronowicz [33, 34]. For a complete account of the beginning of such discoveries
see the excellent historical notes at the ends of the chapters in [19].

The moral to be taken from their discoveries is the following: semisimple Lie
groups all come with quantum deformations, and these quantum deformations can
be observed from multiple perspectives. It is natural to explore these quantizations
for numerous reasons, the most obvious being (1) with a view to applications in
physics, as their origin from the theory of the R-matrix, integrable systems and
Yang Mills theories clearly shows, and (2) with the hope to learn more about the
classical Lie groups from which they emanate, deepening our understanding of
their representation theory.

For simplicity, in these notes we will concentrate almost entirely on the rank-one
simple Lie algebra sl2(C) and its associated compact and complex Lie groups,
SU(2) and SL(2,C). Nonetheless, the results we recount can all be extended to
higher-rank compact and complex semisimple groups if one is willing to invest in
the structure theory of semisimple groups and their somewhat more complicated
quantum analogues.

Perhaps the biggest gap in the present state of quantized semisimple Lie groups
is the question of quantizing noncompact real groups, such as SL(n,R) or SU(p, q)
from the point of view of operator algebras. Progress is being made [4, 6, 21], but
there are still many issues to be uncovered.

2. Quantized enveloping algebras

In this section we briefly recap a few facts on semisimple Lie algebras and
we introduce the quantization of their enveloping algebras, together with some
standard facts about their representation theory.

2.1. Semisimple Lie Algebras. We begin with a brief introduction to semisimple
Lie algebras, sending the reader to [15], [20], [29] for the full account. We assume
the reader is familiar with the notion of Lie algebra and Lie group and their adjoint
representations, denoted, as usual, with ad and Ad respectively.

A complex Lie algebra g is semisimple if the bilinear form (Cartan-Killing form)

(X,Y ) := tr
(
ad(X)ad(Y )

)
is non degenerate. Complex semisimple Lie algebras are direct sums of simple
ones, namely Lie algebras with no non trivial ideals (excluding the one-dimensional
abelian Lie algebra C). Simple Lie algebras are completely classified and they either
belong to the infinite families:

An = sln+1(C) , Bn = so2n+1(C) , Cn = spn(C) , Dn = so2n(C)

or the so called exceptional Lie algebras:

G2 , F4 , E6 , E7 , E8 .
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As usual, sln(C) denotes the complex special linear Lie algebra, son(C) the complex
orthogonal Lie algebra and spn(C) the complex symplectic Lie algebra.

The index of the Lie algebras in the above notation represents its rank, namely
the dimension of any of its Cartan subalgebras, or CSAs, which are, by definition,
maximal abelian subalgebras consisting of semisimple elements. The CSAs are all
isomorphic. Once we fix h a CSA of a complex simple Lie algebra g, by diagonalizing
its action on g via the bracket we obtain the root space decomposition of g:

(1) g = h⊕
⊕
α∈∆

gα

where gα = {X ∈ g | [H,X] = α(H)X, ∀H ∈ h}. The non zero α ∈ h∗ appearing in
(1) are called roots and their set ∆ is called the root system of g. It plays a key role
in the above mentioned classification result: two simple Lie algebras are isomorphic
if and only if they have the same root system.

If g is a real Lie algebra we call

gC = g⊗
R

C

its complexification. If gC is semisimple, we say that g is semisimple.
We define the universal enveloping algebra of a (real or complex) Lie algebra g

as:
U(g) := T (g)/I, I =

〈
[X,Y ]−X ⊗ Y + Y ⊗X | X,Y ∈ g

〉
where T (g) denotes the tensor algebra over g and I is the two sided ideal generated
by all elements of the given form. Thus U(g) is an associative algebra and there is a
one to one correspondence between the representations of g and the representations
of its universal enveloping algebra.

Let us look at an interesting example.

Example 2.1. Consider the real Lie algebra so(3), that is the Lie algebra of skew
symmetric matrices:

so(3) = {A ∈M3(R) | A = −At}

where M3(R) denotes the 3 × 3 real matrices. It is generated both as vector
space and as a Lie algebra by the matrices X = E23 − E32, Y = −E13 + E31,
Z = −E12 + E21. We leave as a simple exercise to the reader to verify that

[X,Y ] = Z , [Y,Z] = X , [Z,X] = Y .

This real Lie algebra is isomorphic to the special unitary Lie algebra of skew
hermitian matrices:

su(2) = {A ∈M2(C) |A = −A∗}

where A∗ = A
t. For instance, a Lie algebra isomorphism is obtained by

X 7→ 1
2

(
0 i
i 0

)
, Y 7→ 1

2

(
0 −1
1 0

)
, Z 7→ 1

2

(
i 0
0 −i

)
,
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As one can readily check:
sl2(C) = su(2)⊗

R
C

where sl2(C) is the Lie algebra of 2×2-matrices with zero trace. For this complexified
Lie algebra, rather than use the basis X,Y, Z above, it is better to use the basis

H =
(

1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
.

The elements H, E and F have brackets:
(2) [H,E] = 2E , [H,F ] = −2F , [E,F ] = H .

The universal enveloping algebra is the complex associative algebra generated by
the elements H, E, F subject to the relations (2), where they are interpreted as
commutator brackets, i.e.,
(3) U(sl2) = 〈H,E, F | HE − EH = 2E, HF − FH = −2F, EF − FE = H〉 .
As is common, we are writing U(sl2) to denote U(sl2(C)), with the base field
assumed to be C unless otherwise specified.

2.2. Quantized enveloping algebras. Around 1980, physicists studying quan-
tum scattering theory, notably Kulish, Reshetikin [22] and Sklyanin [26] observed
that a variant of the enveloping algebra U(sl2) appears when finding solutions to
matrix equations which arise in the quantum inverse scattering method. Informally,
this quantized enveloping algebra can be presented as follows:
(4) Uq(sl2) = 〈H,E, F | [H,E] = 2E, [H,F ] = −2F, [E,F ] = [H]q〉 .
The only change from the classical enveloping algebra U(sl2) in Equation (3) is the
replacement of H by the expression [H]q, which remains to be explained. Before
we get to this, we need to introduce q-numbers.

Observation 2.2. Let q be a real positive number and let a ∈ C. We define:

[a]q = qa − q−a

q − q−1 .

In the special case where a is a natural number, one can readily see that this is
a Laurent polynomial in q:

[a]q = qa−1 + qa−3 + . . . q−a+1 .

As q tends to 1 we have [a]q −→ a.
These q-numbers have some properties resembling the integers, for instance:

[a− b]q[a+ b]q = [a]2q − [b]2q .
On the other hand, of course, [a]q + [b]q 6= [a+ b]q.

With this definition in hand, we wish to make sense of the formal expression

[H]q = qH − q−H

q − q−1 ,

where H is an element of an algebra.
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Observation 2.3. There are three different ways to achieve this, according to
one’s preferences:

(1) By means of a formal power series in q = eh, where h is an indeterminate.
In this point of view, we define Uq(sl2) to be an algebra over the ring of
formal power series C[[h]], with generators E,F,H, and we write

[H]q = ehH − e−hH

eh − e−h
,

where ehH denotes the usual exponential power series:

1 + hH + 1
2!h

2H2 + · · ·

This point of view is favored by algebraists and those working in formal
deformation theory. We will not use it.

(2) By functional calculus, after representing the algebra generated by E, F
and H in a suitable Hilbert space. Once H is realized as a self-adjoint
operator on a Hilbert space, the expression [H]q = qH−q−H

q−q−1 , makes perfect
sense.
This approach is less satisfactory from a formal point of view, since it
requires an implicit understanding of the representation theory of the
algebra Uq(sl2) prior to giving its rigorous definition.

(3) By replacing the generator H by a new generator K = qH and its inverse
K−1 = q−H . In this solution, we must alter the list of relations in Equation
(4) to eliminate any reference to H. We thus define Uq(sl2) as the associative
algebra generated by E, F and K±1 and subject to the relations:

(5) KEK−1 = q−1E, KFK−1 = q−2F , [E,F ] = K −K−1

q − q−1 .

The following observation, whose proof we leave to the reader, explains why the
first two relations in (5) are the appropriate replacements of the first two relations
in (4).

Observation 2.4. Fix q > 0. Let H and X be operators on a finite dimensional
Hilbert space, with H self-adjoint, and let λ ∈ R. The following are equivalent:

(1) [H,X] = λX

(2) qHXq−H = qλX for any q > 0. Here qH is understood as an operator
defined via functional calculus, using qH = ehH with h = ln(q).

2.3. Representations of Uq(g). We are interested in the finite dimensional re-
presentations of the quantized universal enveloping algebra Uq(g), g = sl2(C)
introduced in our previous section.

Since H is semisimple (i.e. diagonalizable), it acts diagonally on U(g) with real
spectrum. Notice that this fact is immediately generalized to the case of a CSA h of
a complex simple Lie algebra, since h consists of commuting semisimple elements.

We now focus on the quantization of U(g).
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Definition 2.5. We say that a finite dimensional complex representation of Uq(g)
is integrable if qH acts diagonally with spectrum consisting of positive real numbers.

We have the following classification result, mimicking a corresponding classical
result, i.e. in the case q = 1, which can be found for example in [29] Ch. 4.

Theorem 2.6. Every finite dimensional integrable representation of Uq(g) is
isomorphic, for a suitable m ∈ 1

2N to
V (m) = span{vm, vm−1, . . . v−m}

with
Hvµ = 2µvµ, Fvµ = vµ−1, Evµ = [m− µ]q[m+ µ+ 1]qvµ+1

for all µ, with the convention vµ = 0 if µ /∈ {m,m− 1, . . . ,−m}.

We call m,m − 1 . . . the weights of the representation and vm, vm−1, . . . are
weight vectors.

Remark 2.7. Note that we are using the convention that our weights are repre-
sentated half integers1, µ ∈ 1

2N. This is reflected in the factor of 2µ in the action
of H given in the theorem, and it will have consequences in certain formulas to
follow. There is an equally common convention where it is the whole integer value
2µ ∈ N which is called the weight.

Proof. Existence. We define V (m) as above and then verify the relations in (4),
or equivalently (5). We leave this check as an exercise.

Uniqueness. Assume we have a finite dimensional irreducible complex represen-
tation V of Uq(g). Let m be the highest weight, i.e. half of the eigenvalue of H
with largest real part, and let vm be one of its eigenvectors.

We have the following important fact. If v ∈ V has weight λ then
HEv = [H,E]v + E(Hv) = 2Ev + E(2λv) = 2(λ+ 1)E .

Hence we have that Ev is a weight vector of weight λ+ 1. Similarly Fv is a weight
vector of weight λ− 1. The consequence of this observation is that

span{vm, vm−1, . . . v−m}
is invariant by the action of H, E and F . By the irreducibility hypothesis it
coincides with V .

As an exercise one can prove that
(6) [E,F k+1] = [k + 1]q[H + k]qF k .
Since V is finite dimensional we must have F k+1vm = 0 for some k ∈ N, and

taking the smallest such k we have F kvm 6= 0. Since Evm = 0, we then have
[E,F k+1]vm = 0 and hence [H + k]qF kvm = 0. Thus F kvm is in the kernel of
H + k, and since F kvm has weight m− k, this means 2(m− k) + k = 0, or k = 2m.
Therefore m ∈ 1

2N. Putting vm−k = F kvm, we obtain a basis for V (m) with the

1In [29], what we call a weight vector of weight k is called a weight vector of weight 2k. All
formulae in there have to be interpreted accordingly.
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stated actions of H and F . The action of E on the vµ can be calculated from
Equation (6). �

We end this section with some remarks on Verma modules. For more details see
[7].
Observation 2.8. Let now m ∈ C. Let us define a countably infinite dimensional
Uq(g) representation:

M(m) = span{vm, vm−1, vm−2 . . .}
subject to the action of H, E, F with exactly the same formulas as in Theorem
2.6. This module is called the Verma module of highest weight M(m). Notice that
M(m) is not finite dimensional, nor necessarily irreducible.

One can show that if m 6∈ 1
2N + iπh−1Z, then M(m) is irreducible. On the

other hand, if m ∈ 1
2N + iπh−1Z, then M(m) is reducible and there is an exact

sequence:
(7) 0 −→M(−m− 1) ↪→M(m) −→ V (m) −→ 0 .
This resolution of the irreducible finite dimensional modules V (m) by Verma

modules plays an important role in many parts of representation theory.

3. Hopf algebras and quantum groups

In this section we introduce our main object of study: Hopf algebras. Hopf
algebras are the central algebraic objects in all approaches to quantum groups.
As we will see, quantized enveloping algebras, algebras of functions on quantum
groups, and convolution algebras of quantum groups will all be modelled by Hopf
algebras.

For more details on definitions and techniques see [19, 23].

3.1. Motivation: Some rough remarks on Pontryagin duality. In this sub-
section, which is not intended to be complete, we make some general remarks on
the duality between a given group, or more precisely its group algebra, and the
functions on such a group. We want to give some hint to the so called Pontrya-
gin duality, a deep result, which is a key tool for our understanding of quantum
geometry.

Consider the example of the Lie group R. Recall that the Fourier transform
gives an isomorphism between the algebra of functions on R with pointwise
multiplication, and the algebra of functions on R with convolution. To make this
precise requires some careful analysis of the spaces of functions. Several specific
algebra isomorphisms are possible, for instance:
• the Schwartz space S(R) of rapidly decaying functions with pointwise multi-

plication, and S(R) with convolution;
• the algebra of continuous functions vanishing at infinity C0(R) with pointwise

multiplication, and the group C∗-algebra C∗(R) with convolution;
• the Paley-Weiner-Schwartz isomorphism between functions on R which extend

analytically to C with certain growth conditions under pointwise multiplica-
tion, and compactly supported distributions on R with convolution;
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• the Fourier algebra A(R) with pointwise multiplication, and the algebra L1(R)
with convolution.

Similar isomorphisms can be obtained between functions on the circle T with
pointwise multiplication, and functions on Z with convolution, or vice versa, by
using Fourier series instead of Fourier transforms.

These are examples of Pontryagin duality. We will not make explicit use of
Pontryagin duality in these notes, but it can be useful to motivate the constructions
to follow. Let us develop this philosophy without going into technical details.

Let G be a group. For the moment, we may consider a finite group, a locally
compact topological group, a Lie group, or a number of other types of group.

As indicated above, a group admits two general types of algebras. The first
general type of algebra is “functions with pointwise multiplication”. Some examples
of this type:
• C(G), functions on a finite group,
• C0(G), continuous functions vanishing at infinity on a locally compact group,
• O(G), regular functions on a linear algebraic group,
• C∞c (G), smooth compactly supported functions on a Lie group,
• L∞(G), essentially bounded functions on a measured group.

The second type is “distributions with convolution”:
• C[G], the group ring of a finite group,
• L1(G), integrable functions on a locally compact topological group (which

identify as distributions upon multiplying with Haar measure),
• C∞c (G), smooth compactly supported functions on a Lie group with convolu-

tion (likewise),
• E ′(G), compactly supported distributions on a Lie group,
• C∗(G), the group C∗-algebra of a locally compact group.
• vN(G), the von Neumann algebra of a locally compact group,
• U(g), the universal enveloping algebra of a Lie algebra (which are distributions

supported at the identity).
Remaining vague about the analytical details, let us denote any algebra of the first
kind by A(G) and any of the second kind as D(G). We will be more concrete in
the next section.

The reason why these two types of algebras exist is a consequence of the functo-
riality of functions and distributions with respect to the fundamental operations of
a topological group. Recall that C-valued functions are contravariant objects. For
instance, if φ : M → N is a smooth map between manifolds, then we can pull back
smooth C-valued functions from N to M :

φ∗ : C∞(N)→ C∞(M) ; f 7→ φ∗f = f ◦ φ .

On the other hand, distributions are covariant objects, since they are dual to
smooth functions. Explicitly, if we write (u, f) for the pairing between a distribution
u ∈ E ′(M) and a smooth function f ∈ C∞(M), then we have a pushforward map
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defined by
φ∗ : E ′(M)→ E ′(N) ; (φ∗u, f) := (u, φ∗f)

for u ∈ E ′(M), f ∈ C∞(N).
Now consider the case where M is a group. The pointwise products and convolu-

tion products of the various algebras listed above all arise by applying the functorial
operations to two basic structural maps on a group:

Mult : G×G→ G ; (g, h) 7→ gh (the group law)
Diag : G→ G×G ; g 7→ (g, g) (the diagonal embedding).

The diagonal embedding is a greatly underestimated map. We shall see its crucial
role in Pontrjagin duality shortly.

These basic structural maps induce products by push-forward and pull-back:

Mult∗ : D(G)⊗D(G) ∼= D(G×G)→ D(G) (convolution)
Diag∗ : A(G)⊗A(G) ∼= A(G×G)→ A(G) (pointwise multiplication).

The isomorphisms here will require using some completed tensor product ⊗ which
will depend heavily upon the categories of “functions” and “distributions” in which
one is working. Since we are deliberately avoiding the analytical details in this
section, we will not address this issue here.

This point of view reveals that the algebras A(G) and D(G) should also have
coproducts, i.e. maps in the reverse direction:

Diag∗ : A(G)→ A(G×G) ∼= A(G)⊗A(G) ,

Mult∗ : D(G)→ D(G×G) ∼= D(G)⊗D(G) .

Thus A(G) and D(G) will be bialgebras, and more specifically Hopf algebras (see
below for definitions). Again, for infinite groups, the technicalities of the tensor
product may require us to add some qualifying adjectives—multiplier Hopf algebras,
for instance.

The principle of Pontrjagin duality is that one should be able to exchange the roles
of the two algebras A(G) and D(G). For instance, for the group G = R we discussed
various instances of algebra isomorphisms of the general form A(R) ∼= D(R) for
different examples of pointwise algebras A(R) and convolution algebras D(R). We
say that R is its own Pontryagin dual, and write R̂ = R. Similarly, there are
various isomorphisms of the form A(T) ∼= D(Z), giving the Pontryagin duality
T̂ = Z.

It is natural to ask whether Pontryagin duality applies more generally. To
begin with, we could formally define an algebra A(Ĝ) := D(G) without giving any
concrete meaning to the symbol Ĝ. If we are lucky, we will be able to realize this
algebra A(Ĝ) as the algebra of functions on some concrete topological group Ĝ.

However, this strategy relies on the categories of algebras D(G) and A(G) being
the same, which is not the case. The fundamental obstruction is that the pointwise
algebras A(G) are always abelian, whereas the convolution algebras D(G) are
abelian only if G is. Let us spell this out.
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The properties of the algebras A(G) and D(G) are inherited from properties of
Diag and Mult, respectively. For instance, the associativity of D(G) comes from
the associativity of Mult,

Mult ◦ (Mult× id) = Mult ◦ (id×Mult) : (g, h, k) 7→ ghk ,

while the associativity of A(G) comes from the co-associativity of Diag,
(Diag × id) ◦ Diag = (id× Diag) ◦ Diag : g 7→ (g, g, g) .

Similarly, A(G) is always abelian, since Diag is always co-commutative in the sense
that if S : (g, h) 7→ (h, g) denotes the flip map on G×G, we have

S ◦ Diag = Diag ,
On the other hand, D(G) is abelian only if Mult is abelian, that is, only if

Mult ◦S = Mult .
If we hope to have a coherent theory of Pontrjagin duality, we must make one

of the following choices:
(1) Restrict attention to abelian groups for which Mult is commutative.
(2) Define “non co-abelian groups” for which Diag is not cocommutative.

The second strategy, appropriately interpreted, leads to the definition of a quantum
group. The specific technical details will depend upon the category of classical
groups one is trying to mimic, but will in every case require the notion of Hopf
algebra.

3.2. Hopf algebras. Let us make some of the last section more concrete. Here is
the quick definition of a Hopf algebra, which is spelled out in more detail in the
Appendix A.

Definition 3.1. A Hopf algebra over C is a complex vector space A equipped
with five maps:
• An associative product µ : A⊗A → A,
• A coassociative coproduct ∆: A → A⊗A,
• A unit 1 ∈ A, realized also as a unit map i : C→ A; z 7→ z1,
• A counit map ε : A → C, satisfying (id⊗ ε) ◦∆ = id = (ε⊗ id) ◦∆,
• An invertible antipode S : A → A, verifying the antipode identity

µ ◦ (S ⊗ id) ◦∆ = i ◦ ε = µ ◦ (id⊗ S) ◦∆ .

The coproduct and counit should be unital algebra homomorphisms, or equivalently
the product and unit are counital coalgebra homomorphisms. The antipode is
automatically an algebra and coalgebra antihomomorphism.

We shall use Sweedler notation for the coproduct:
(8) ∆(X) = X(1) ⊗X(2) ,

where the right-hand side is a formal notation to designate a finite sum of elementary
tensor products

∑
iX(1),i ⊗X(2),i ∈ A⊗A.
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The following examples show that finite dimensional Hopf algebras can be used
to give rigorous definitions of algebras of both types from the previous section,
A(G) and D(G), in the case where G is a finite group.

Let G be a finite group, with the following five structural maps

Mult : G×G→ G, group law
Diag : G→ G×G, diagonal embedding

e : {1} → G, inclusion of the unit
q : G→ {1}, quotient to the unit
s : G→ G, inverse.

Example 3.2. The algebra C(G) of complex-valued functions on G is a Hopf
algebra with structural maps defined by pull-back:

(µ,∆, i, ε, S) = (Diag∗,Mult∗, q∗, e∗, s∗) .

This is the Hopf algebra of “functions with pointwise multiplication”.

Example 3.3. The dual space C(G)∗ is a Hopf algebra with structural maps
defined by push-forward:

(µ,∆, i, ε, S) = (Mult∗,Diag∗, e∗, q∗, s∗) .

Morally, this is the Hopf algebra of “distributions with convolution”.

Example 3.2 is commutative and Example 3.3 is cocommutative. There are
examples of finite dimensional Hopf algebras which are neither commutative nor
cocommutative. But we will be interested in infinite dimensional examples.

3.3. Quantized enveloping algebras as quantum groups. In this section we
present an example of a quantized enveloping algebra as a Hopf algebra. We begin
with the classical case.

Example 3.4. Let g be a complex Lie algebra. The universal enveloping algebra
U(g) is a Hopf algebra where the coproduct, counit and antipode are defined on
generators X ∈ g by

∆(X) = X ⊗ 1 + 1⊗X , ε(X) = 0 , S(X) = −X .

It is an exercise to show that these are precisely the maps Diag∗, q∗ and s∗, if
the elements of U(g) are viewed as distributions supported at the identity.

After Kulish and Reshetikhin [22] discovered the quantized enveloping algebras
Uq(sl2), Sklyanin [26] observed that it is also a Hopf algebra. Thus quantum groups
were born.

For the purpose of these notes, we call quantum group a Hopf algebra which is
related, typically by a deformation parameter q as above, to either the universal
enveloping algebra, or the function algebra (Sec. 4), or the convolution algebra
(Definition 4.7) of an algebraic group.
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Theorem 3.5 (Sklyanin). The quantized enveloping algebra Uq(sl2) with generators
E,F,K±1 and relations (5) is a Hopf algebra when equipped with the q-deformed
maps

∆(E) = E ⊗ qH + 1⊗ E , ∆(F ) = F ⊗ 1 + q−H ⊗ F , ∆(qH) = qH ⊗ qH ,

ε(E) = ε(F ) = 0 , ε(qH) = 1 ,

S(E) = −Eq−H , S(F ) = −qHF , S(qH) = q−H .

Observation 3.6. The formulas for ∆(qH), ε(qH) and S(qH) follow from the
classical formulas

∆(H) = H ⊗ 1 + 1⊗H , ε(H) = 0 , S(H) = −H ,

via functional calculus, in the same way as in Observation 2.3 – exercise for the
reader. In this sense, it is reasonable to say that the generator H is undeformed in
Uq(sl2). On the other hand, the formulas for E and F are q-deformed, and putting
q = 1 recovers the classical formulae.

3.4. Real structures and compact quantum groups. A real structure on a
quantum group is encoded by a ∗-structure. To understand why this is the case,
let us begin with the classical case.

Let K be a real Lie group, with real Lie algebra k. For simplicity we take K to
be compact here.

A unitary representation of K is a continuous homomorphism π : K → U(V )
from K to the unitary operators on a complex Hilbert space V , which we will
assume is finite dimensional. By differentiating π at the identity, we obtain a Lie
algebra homomorphism from k to the Lie algebra u(V ) of skew-Hermitian operators
on V . This is again denoted by π.

Note that the Lie algebra representation π : k → u(k) is a real linear map. As
usual, it is far preferable to work with complex linear maps, since spectral theory in
complex vector spaces is better behaved. We are therefore led to define the complex
linear extension of π. Specifically, if we write

g = kC = k⊗R C

for the complexification of k, then we can extend π by complex linearity to a
complex Lie algebra homomorphism

π : g→ u(V )C = End(V ) .

As is the habit in this subject, we continue to denote this complexified representation
by the same letter π. Finally, we can extend this complex Lie algebra morphism by
universality to a complex algebra homomorphism from the universal enveloping
algebra,

(9) π : U(g)→ End(V ) .

It is this notion of representation that is most easily carried over to the quantized
enveloping algebras Uq(g).
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Note, though, that a homomorphism of this kind could also be obtained from a
different starting point. Let G denote the complex Lie group whose Lie algebra
is g. Suppose that σ : G→ End(V ) is a holomorphic (not unitary) representation
of G on V . We can pass to the complex derivative of σ at the identity and then
extend to a complex algebra representation

(10) σ : U(g)→ End(V ) .

This suggests the question: how can we distinguish a holomorphic representation
(10) of g from a unitary representation (9) of k, once we have passed to the
associated representation of U(g)? The answer is that unitary representations of k
have one further piece of structure. Namely, since we can distinguish the real linear
subspace k inside g, we can define a ∗-involution on g:

(11) ∗ : X 7→
{
−X if X ∈ k ,

X if X ∈ ik .

This definition is motivated by the fact that under any unitary representation of
K, elements of k will act as skew-Hermitian operators.

The involution (11) is a complex antilinear anti-homomorphism of g, meaning

(λX)∗ = λX∗ ,

[X,Y ]∗ = [Y ∗, X∗]

for all λ ∈ C and X,Y ∈ g. It extends to a complex antilinear algebra antihomo-
morphism ∗ of U(g). That is, U(g) becomes a ∗-algebra.

When U(g) is equipped with the involution ∗ of (11), we will denote it instead
by UR(k), to signify the fact that we are regarding it as the complexification of the
enveloping algebra of a real Lie group K, and not as the enveloping algebra of the
complex Lie group G.

Example 3.7. Consider the example of k = su(2). As discussed in Example 2.1,
the complexification of k is g = sl2(C). The standard basis elements E,F,H of
sl2(C) do not belong to the real Lie subalgebra su(2). If we write them in terms of
elements of su(2), we have

E =
(

0 1
0 0

)
= −Y − iX , F =

(
0 0
1 0

)
= Y − iX ,

H =
(

1 0
0 −1

)
= −2iZ ,

where

X = 1
2

(
0 i
i 0

)
, Y = 1

2

(
0 −1
1 0

)
, Z = 1

2

(
i 0
0 −i

)
,

form an R-basis for su(2). Applying the ∗-operation of (11), we get

E∗ = Y − iX = F , F ∗ = −Y − iX = E , H∗ = −2iZ = H .
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This real structure, which distinguishes UR(su(2)) from U(sl2), can be generali-
zed to define the quantization UR

q (su(2)), as we will now explain. We start with
the definition of a real structure on a general Hopf algebra.

Definition 3.8. A Hopf ∗-algebra is a Hopf algebra equipped with a conjugate-linear
involution ∗ which is an algebra anti-automorphism and coalgebra automorphism.

Proposition 3.9. The quantized enveloping algebra Uq(sl2) is a Hopf ∗-algebra
when equipped with the involution defined by

E∗ = qHF , F ∗ = Eq−H , H∗ = H .

Remark 3.10. Note that, when considering the generator qH , the relation H∗ = H
is equivalent to (qH)∗ = qH . Recall that we are only considering positive real values
of q.

We will write UR
q (su(2)) for Uq(sl2) equipped with this real structure.

With this in hand, a unitary representation of the quantum group Kq should be
understood to mean an integrable ∗-representation of the ∗-Hopf algebra UR

q (k).
The following proposition shows that, as in the classical case, all of the irreducible
Uq(g)-modules V (m) of Theorem 2.6 can be realized as unitary Kq-representations.

Proposition 3.11. Each of the irreducible representations V (m) of Uq(g), with
m ∈ 1

2N, admits an inner product such that it becomes a ∗-representation of UR
q (k).

3.5. Operations on Hopf algebra representations. One of the significant
advantages of Hopf algebras is that we can define tensor products of their repre-
sentations. There is no reasonable way to define the tensor product V ⊗W of two
representations of a general associative algebra A. However, if A is a Hopf algebra,
we can use the coproduct ∆ : A → A⊗A to define

(12) X(v ⊗ w) := X(1)v ⊗X(2)w , (X ∈ A, v ∈ V, w ∈W ) .

We are again using Sweedler notation, see Equation (8).
Moreover, the counit allows us to define a trivial representation of A on C:

Xz := ε(X)z , (X ∈ A, z ∈ C) .

It is a simple exercise using the axioms of a Hopf algebra to show that C⊗ V ∼=
V ∼= V ⊗C as representations.

Finally, the antipode lets us define a contragredient representation on V ∗, by

Xη = S(X)tη := η ◦ S(X) , (X ∈ A, η ∈ V ∗) ,

where the superscript t denotes transpose.

4. Quantized algebras of functions

In this section we introduce the quantized algebras of functions of a complex
semisimple group G and its maximal compact subgroups K. We elucidate the
theory as always for G = SL(2,C) and K = SU(2), though it can be formulated in
full generality (see [19]).
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4.1. The algebra of polynomial functions on Gq. Given a vector field on a
manifold M , or more generally a scalar-valued differential operator on M , we can
obtain a linear functional on C∞(M) by applying it and evaluating at a point.
When the manifold is a connected algebraic group G, we can look at the Lie
algebra g of left invariant vector fields on G. We then have a duality of Hopf
algebras between the left invariant differential operators, which are identified with
the universal enveloping algebra U(g), and the algebraic functions on G, O(G):

U(g)×O(G) −→ C,(13)

X, f 7→ (X, f) := d

dt

∣∣∣∣
0
f(exp(tX)) for X ∈ g .

The term duality of Hopf algebras refers to the fact that the product of U(g) and
coproduct of O(G) are dual maps with respect to this pairing, and vice-versa, see
Observation 4.4 as well as [18, Ch.1] and our Appendix A for more details.

Remark 4.1. Abstractly, this duality comes from the fact that the coproduct on
U(g) and product on O(G) are given by Diag∗ and Diag∗, respectively, according to
the general philosophy of Section 3.1. Similarly, the product on U(g) and coproduct
on O(G) are given by Mult∗ and Mult∗, respectively.

We thereby obtain an embedding O(G) ↪→ U(g)∗. This embedding is injective by
the fact that algebraic functions O(G) are determined by their jets at the identity.

We now turn to the quantum setting and realize, with the same philosophy, the
quantized algebra of algebraic functions on a group G as a subspace of Uq(g)∗ with
a Hopf algebra structure. In these notes we are taking g = sl2(C), but if we had
defined Uq(g) for other semisimple Lie algebras g, the same definition would apply.

Definition 4.2. Let V be a finite dimensional representation of a quantized
enveloping algebra Uq(g). We define a matrix coefficient of V to be an the element
of the dual Uq(g)∗ of the form

〈η| · |ξ〉V : X 7→ (η,Xξ) , X ∈ Uq(g), ξ ∈ V, η ∈ V ∗ .

We denote such matrix coefficient as 〈η| · |ξ〉V .
We define the quantized algebra of functions O(Gq) as the subspace of Uq(g)∗

consisting of the matrix elements of all finite-dimensional integrable representations
of Uq(g).

From the definition, it is not clear why this is an algebra. In fact, it is not even
immediately clear why this is a linear subspace of Uq(g). Linearity follows from the
fact that

〈η| · |ξ〉V + 〈η′| · |ξ′〉W = 〈η ⊕ η′| · |ξ ⊕ ξ′〉V⊕W .

The other Hopf algebra operations will come from other operations on the Uq(g)-re-
presentations V and W , as the following theorem shows.
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Theorem 4.3. Let the notation be as above. Then O(Gq) is a Hopf algebra with
multiplication µ and comultiplication ∆ given as follows:

〈η1| · |ξ1〉V 〈η2| · |ξ2〉W = 〈η2 ⊗ η1| · |ξ2 ⊗ ξ1〉V⊗W ,(14)

∆(〈η| · |ξ〉V ) =
∑
i

〈η| · |ei〉V ⊗ 〈ei| · |ξ〉V ,(15)

where {ei} and {ei} are bases of V and V ∗ respectively with ei(ej) = δij . The unit
and counit are given by

1 = 〈1| · |1〉C, ε(〈η| · |ξ〉V ) = (η, ξ) ,
where C denotes the trivial representation of Uq(g) given by the counit of the
quantized enveloping algebra ε : Uq(g)→ C = End(C). We omit the definition of
the antipode, which is defined in terms of the contragredient representation, see
[19] or [32, §3.10].

We will omit the proof of this theorem, although it is not particularly difficult if
we take inspiration from the notion of dual Hopf algebras, see Appendix A. In fact,
the quantum groups Uq(g) and O(Gq) fall into the general philosophy of Pontryagin
duality described in Section 3.1, as explained in the following observation, whose
details are left to the reader.
Observation 4.4. Let us denote the pairing of Uq(g) and O(Gq) by

Uq(g)×O(Gq)→ C ; (X, 〈η| · |ξ〉V ) = 〈η,Xξ〉 .
We extend this to a pairing between Uq(g)⊗ Uq(g) and O(Gq)⊗O(Gq) by (X ⊗
Y, a⊗ b) = (X, a)(Y, b). Then the Hopf algebra operations on Uq(g) and O(Gq) are
skew-dual to one another in the sense that, for all X,Y ∈ g, a, b ∈ O(Gq),

(∆X, b⊗ a) = (X, ab) , (X ⊗ Y,∆a) = (XY, a) ,(16)
(1Uq(g), a) = ε(a) , (X, 1O(Gq)) = ε(X) ,
(S(X), a) = (X,S(a)) .

We have included the relation between the antipodes in this list, although the
explicit definition of the antipode on O(Gq) was not specified in Theorem 4.3. In
fact, this last relation can be taken as a definition of S(a) for a ∈ O(Gq) and one
can check that it satisfies the antipode relation.

The pairing
Uq(g)×O(Gq) −→ C

is in analogy with the differential action of vector fields on functions described
in (13). Specifically, if g is the Lie algebra of a classical Lie group G, and V is a
finite-dimensional representation of V , then we can alternatively interpret a matrix
coefficient 〈η| · |ξ〉V as a function

〈η| · |ξ〉V : G 7→ (η, πV (g)ξ) ,
and then we have (X, a) = d

dt

∣∣
0 a(etx) for a = 〈η| · |ξ〉V ∈ O(G) and X ∈ U(g).

This defines the algebra of polynomial functions on the quantum group Gq =
SLq(2,C), viewed as a complex algebraic variety.
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4.2. Compact Quantum Groups. In the classical case, the algebra O(G) is
isomorphic to the O(K), where K is the maximal compact subgroup. This is
because any complex polynomial on G is determined by its restriction to K, and
any polynomial on K extends holomorphically to G. But as we have seen previously
in Section 3.4, the polynomials on K admit an additional ∗-operation, given by
complex conjugation. This too has an analogue in the quantum case.

Theorem 4.5. The Hopf algebra O(Gq) becomes a Hopf ∗-algebra when equipped
with the involution determined by duality with UR

q (k) as follows:

(X, a∗) := (S−1(X)∗, a) ,

where the ∗-structure on UR
q (k) is that given in Proposition 3.9.

The proof is an exercise using the axioms of a Hopf ∗-algebra.
Let us look more carefully at the example of g = sl2(C).

Example 4.6. We specialize to K = SU(2) and its complexification G = SL(2,C).
The polynomial algebra, O(Gq) is spanned by the matrix coefficients 〈η| · |ξ〉V (m),
where the representations V (m) are those defined in Section 2.3 with m ∈ 1

2N.
The subspace of matrix coefficients of a given representation V (m) is equal to
(End(V (m)))∗ as a matrix coalgebra, meaning it comes with the matrix coproduct
(15). We get

(17) O(Gq) =
⊕
m∈ 1

2 N

(End(V (m))∗

as a direct sum of coalgebras. The product on O(Gq) is more complicated in this
picture since it depends upon the decomposition of tensor products into direct
sums of irreducibles, see (14).

The representation V (1) is generating for the set of finite dimensional represen-
tations of Uq(g), in the sense that every V (m) is a subrepresentation of a tensor
power V (1)⊗m. As a consequence, the matrix coefficients for V (1) are algebra
generators of O(Gq).

We remark that Woronowicz [33] discovered the quantized function algebra
O(SL(2,C)) by experimentation. He denoted the generators by

α = 〈v 1
2 | · |v 1

2
〉, β = −qγ∗ = 〈v 1

2 | · |v− 1
2
〉,

γ = 〈v− 1
2 | · |v 1

2
〉, δ = α∗ = 〈v− 1

2 | · |v− 1
2
〉 ,

where (v 1
2 , v−

1
2 ) is the dual basis of V (1)∗ to (v 1

2
, v− 1

2
) ∈ V (1). These generators

satisfy the relations

αβ = qβα , αγ = qγα , βδ = qδβ , γδ = qδγ , βγ = γδ ,

αδ − qβγ = δα− qβγ = 1 .

For more details see [19, Ch.4].
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4.3. The convolution algebra polynomials on Kq. As suggested by the dis-
cussion of Subsection 3.1, the quantized enveloping algebra UR

q (k) is not the only
possible model for a convolution algebra dual to the function algebra O(Kq). Indeed,
given the decomposition of O(Kq) into finite dimensional subspaces, which we saw
in Equation (21), it is natural to make the following definition.

Definition 4.7. We define the algebra of polynomial densities on O(Kq) as:

(18) D(Kq) =
⊕
m∈ 1

2 N

End
(
V (m)

)
.

The product is defined entrywise.

This space D(Kq) has a canonical pairing with O(Kq) given by applying the
natural pairing in each of the components. Concretely, this amounts to

End(V (m))× End(V (m))∗ → C ; (x, 〈η| · |ξ〉V (m)) 7→ (η, xξ) .

Moreover, D(Kq) can be endowed with Hopf ∗-algebra operations by using exactly
the same skew-duality relations as we had for Uq(g) in Example 4.4, with one
technical caveat which we mention shortly.

For x, y ∈ D(Kq) and a, b ∈ O(Kq), we define

(∆x, b⊗ a) = (x, ab) , (x⊗ y,∆a) = (xy, a) ,(19)
(1Dq(g), a) = ε(a) , (x, 1O(Gq)) = ε(x) ,

(S(x), a) = (x, S(a)) , (x∗, a) = (x, S(a)∗) .

The technical caveat is that the coproduct ∆ will have image not in the tensor
product D(Kq)⊗D(Kq), but in the multiplier algebra of this. With these operations,
D(Gq) is a multiplier Hopf ∗-algebra. We will not define multiplier Hopf algebras
here, although they are a relatively simple generalisation of Hopf algebras. For
details see [27, 28] or [32, Ch.2].

To give a quick idea of why multipliers are necessary, note that the unit for
D(Kq) is given by

1 =
∏

m∈ 1
2 N

IV (m) ,

which belongs in the direct product of the End(V (m)), not the direct sum as in
(18). Thus 1 is not an element of the algebra D(Kq), but it is a multiplier of D(Kq).

The family of representations of UR
q (k) on each V (m) yields an embedding

UR
q (k) ↪→

∏
m∈ 1

2 N

End
(
V (m)

)
.

In this way, the quantized enveloping algebra UR
q (k) is a ∗-subalgebra of the

multiplier algebra of D(Kq). The algebras UR
q (k) and D(Kq) play very similar roles

in the theory of quantized compact semisimple Lie groups, with the main difference
being that in a typical ∗-representation on a Hilbert space, elements of UR

q (k) act
as unbounded operators, whereas elements of D(Kq) act boundedly.
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5. The Peter Weyl theorem for a compact semisimple quantum group

A fundamental problem in unitary representation theory of a group is the
following: How does the regular representation of G decompose into irreducible
components? In the case of a compact group K, the solution is given by the famous
Peter-Weyl decomposition of L2(K) in terms of matrix coefficients of irreducible
unitary representations.

This problem also makes sense for quantum groups, at least if they have a real
structure. In this section, we will describe the analogue of the Peter-Weyl theorem
in the case of a quantized compact semisimple Lie group, specifically SUq(2).

5.1. Haar Measure. In order to get started, we need the notion of Haar measure.
Definition 5.1. Let A(G) be a Hopf algebra. A left-invariant integral on A(G) is
a linear functional φ : A(G)→ C such that for all a ∈ A(G),

a(1)φ(a(2)) = φ(a)1 .
Similarly, a right-invariant integral satisfies φ(a(1))a(2) = φ(a)1.

If moreover A(G) is a ∗-Hopf algebra and if φ is positive definite in the sense
that 〈a, b〉 := φ(a∗b) is an inner product on A(G), then we say that φ is a left (or
right) invariant Haar integral.

For instance, if G is a compact semisimple Lie group and A(G) is the algebra of
polynomial functions, then integration against Haar measure is a bi-invariant Haar
integral.

There is a q-analogue of this Haar integral on any q-deformed compact semisimple
Lie group. As usual we will concentrate only on Kq = SUq(2).
Theorem 5.2. The linear functional φ : O(Kq) −→ C defined by

(1) φ(〈1 | · | 1〉V (0)) = 1,
(2) φ(〈η | · | ξ〉V (m)) = 0, for all m 6= 0 and all ξ ∈ V (m), η ∈ V (m)∗.

is a left- and right-invariant Haar integral on O(Kq).
The analogous formula works for any compact semisimple quantum group: see

[19, Ch.11].
Using the left-invariant Haar integral φ, we can define a Hilbert space L2(Kq)

as the completion of O(Kq) with respect to the inner product
〈f, g〉 = φ(f∗g)

(
f, g ∈ O(Kq)

)
.

As in the classical case the Hilbert space L2(Kq) admits two representations
of Kq, called the left and right regular representations. To specify these repre-
sentations, recall from Section 3.4 that we must take the point of view that a
unitary representation of the quantum group Kq is given by a ∗-representation of
the quantized enveloping algebra UR

q (k).

Proposition 5.3. There are left and right actions of UR
q (k) on O(Kq) defined by

XBf = (X, f(2))f(1) , fCX = (X, f(1))f(2) ,

respectively, for X ∈ UR
q (k) and f ∈ O(Kq), where the pairing (, ) is as in Obs. 4.4.
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Let us define the left and right regular representations of UR
q (k) on O(Kq) by

(20) ρ(X)f = XBf , λ(X)f = fCS(X) .

Note that in the definition of λ we are using the standard trick of turning a right
representation into a left representation by using the inverse, or rather the antipode.
These are ∗-representations in the sense that

〈ρ(X∗)f, g〉 = 〈f, ρ(X)g〉 , 〈λ(X∗)f, g〉 = 〈f, λ(X)g〉 ,

for all X ∈ UR
q (k) and f, g ∈ O(Kq). The proof of this, and of Proposition 5.3, is a

nice exercise in manipulating the Hopf ∗-algebra axioms and the properties of the
Haar integral. Note that we can also define these representations for the convolution
algebra D(Kq) by simply replacing X ∈ UR

q (k) with x ∈ D(Kq) throughout the
above formulas.

We can also use the Haar integral to define the Fourier transform.

Theorem 5.4. The linear map

F : A(Kq)→ D(Kq) ; a 7→ â := φ( · a) ,

is a linear isomorphism.

We call this linear isomorphism the Fourier transform.
The many properties of the Fourier transform can be found in [32, Ch.2]. For

instance, as in the classical case, Fourier transform intertwines the product in
D(Kq) with the convolution product in A(Kq), which is defined by

a ∗ b := φ
(
S−1(b(1))a

)
b(2) .

5.2. The Peter-Weyl Theorem. We can now describe the decomposition of the
regular representation given by the Peter-Weyl Theorem, or equivalently the Schur
Orthogonality Relations, which describes the decomposition of the left and right
regular representation on L2(Kq) into irreducible components.

Before we go to its statement, we recall that L2(Kq) comes equipped with a
UR
q (k)⊗ UR

q (k)-representation, given by the left and right regular representations:

(X ⊗ Y ) · f = λ(X)ρ(Y )f ,
(
X,Y ∈ UR

q (k), f ∈ L2(Kq)
)
,

Next, let us write L2
q(V (m)) for the finite dimensional matrix algebra End(V (m))

equipped with the twisted Hilbert-Schmidt inner product

〈T1, T2〉L2
q(V (m)) = 1

dimq V (m) Tr
(
T ∗1 T2πm(qH)

)
,

where dimq V (m) := Tr(πm(qH)) is called the q-dimension of the representation
V (m). We equip this space with the representation of UR

q (k)⊗ UR
q (k) given by

(X ⊗ Y ) · T = πm(X)Tπm
(
S(Y )

)
.
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Theorem 5.5 (Peter-Weyl/Schur Orthogonality). Let Kq = SUq(2), q ∈ (0,∞).
We have an isometric isomorphism of unitary Kq ×Kq-representations:

(21) L2(Kq) ∼=
⊕
m∈ 1

2 N

L2
q

(
V (m)

)
.

The isometric isomorphism is given by f 7→
⊕
πm(f̂), which is to say that for all

f ∈ O(Kq) we have

〈f, g〉L2(Kq) =
∑

m∈ 1
2 N

1
dimq V (m) Tr

(
πm(f̂)∗πm(ĝ)πm(qH)

)
,

and this map intertwines the UR
q (k)⊗ UR

q (k)-representations.

The family of functionals m 7→ 1
dimq V (m) Tr( · qH) can be understood as the

noncommutative Plancherel measure on the unitary dual of Kq. The Peter-Weyl
Theorem above can be generalized to any compact quantum group, see [19, Ch.11].

6. Quantized complex semisimple Lie groups and their representations

In this section, we will discuss the unitary representation theory of the quan-
tization Gq of a complex semisimple Lie group G. This necessarily means that
we will be considering the complex group G as a real Lie group, since unitary
representations are not holomorphic maps.

6.1. Complex semisimple groups as real Lie groups. We must begin by
describing the real structure of the complex semisimple group G in a way that is
appropriate for the q-deformation process. This story, in the context appropriate
for operator algebras and unitary representation theory, begins the seminal work
of Podleś and Woronowicz [25] on the group SLq(2,C), although related ideas had
been investigated by Drinfeld previously [8, 9]. The key construction is the Drinfeld
double, or dually the Woronowicz double, which were introduced in the above cited
articles and which we will describe shortly.

Let us mention that the situtation for general real semisimple Lie groups is far
more delicate. With the exception of the quantum group SUq(1, 1), the analytic
q-deformations of noncompact non-complex semisimple Lie groups remain very
poorly understood. For information about SUq(1, 1) see [4, 21] and references
within. Recent advances can also be found in [5, 6].

Let us consider, therefore, a complex semi-simple Lie group G. To maintain our
concrete approach, we will take G = SL(2,C).

Since we are interested in the unitary representation theory of G rather than
the finite dimensional holomorphic representations which we briefly mentioned
in Section 3.4, we will not be interested in a quantum analogue of the complex
enveloping algebra U(g), but rather in a quantum analogue of the enveloping
algebra UR(gC) of the complexified Lie algebra gC = g⊗R C. Since g is already a
complex Lie algebra, taking its complexification may lead to some confusion.

As a vector space we have
gC ∼= g⊕ g .
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It turns out that this is true also as an isomorphism of complex Lie algebras,
although the map which institutes the Lie algebra isomorphism is perhaps not
immediately obvious. We will return to this point shortly. Instead, we will begin
with the philosophy of the quantum double.

The Iwasawa decomposition says that G can be decomposed as a product of
real Lie groups
(22) G ∼= K ./ AN ,

where
• K is the maximal compact subgroup,
• A is the subgroup of diagonal matrices with strictly positive entries,

• N is the subgroup of unipotent upper triangular matrices
(

1 z
0 1

)
.

The bowtie in (22) signifies the fact that K and AN are both Lie subgroups but
neither is a normal subgroup. Nonetheless, the product map

K ×AN → G ; (k, an) 7→ kan

is a diffeomorphism, as is the flipped map AN ×K → G. As a consequence, we
have exchange relations

kan = a′n′k′ ,

where a′n′ and k′ can be calculated as functions of k and an.
We want to quantize this setting. The philosophy for this is referred to as

the quantum duality principle (see [12] and refs therein). It is not necessary to
understand this principle for what follows, since the quantum group SLq(2,C) will
be defined concretely in terms of generators and relations. But the principle is
interesting, so we will take a short informal detour to sketch out the idea.

6.2. The Quantum Duality Principle and the Drinfeld double. The sub-
groups K and AN of G are subgroups of equal dimension and both admit natural
Poisson Lie-group structures. A Poisson structure on a Lie group k is given by a bi-
vector field Π. Linearising Π at the identity element gives a linear map deΠ: k→ k∧k.
Moreover, the axioms of the Poisson bivector turn out to correspond exactly to the
fact that deΠ is the dual of a Lie bracket [ · , · ] on the dual space k∗. This yields
Drinfeld’s equivalence of categories between simply connected Poisson Lie groups
and Lie bialgebras.

In the example of k = su(2), it turns out that the dual Lie algebra structure on
k∗ is isomorphic to an. Accordingly, we say that the groups K and AN are Poisson
dual.

The quantum duality principle states that, upon quantization, Poisson duality
is replaced by Pontryagin duality. That is, the appropriate quantum analogue of
the Poisson dual AN is the Pontryagin dual K̂q. In terms of Hopf ∗-algebras, this
means

O(ANq) = O(K̂q) = D(Kq) and D(ANq) = D(K̂q) = O(Kq) .
The above discussion justifies the following definition. As we said above, this

definition could also be understood independently of the quantum duality principle.
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Definition 6.1. Let G = SL(2,C) (or any other simply connected complex
semisimple Lie group). We define the space of regular distributions on Gq to be

D(Gq) = D(Kq ./ ANq) := D(Kq)⊗O(Kq) .
We equip D(Gq) with the twisted product
(23) (x ./ a)(y ./ b) =

(
y(1), a(1)

)
xy(2) ./ a(2)b

(
S(y(3)), a(3)

)
,

where we use the Sweedler notation (1⊗∆)∆(a) = a(1) ⊗ a(2) ⊗ a(3), etc and we
denote with x ./ a elements in D(Gq). We also equip D(Gq) with the untwisted
coproduct
(24) ∆(x ./ a) =

(
x(1) ./ a(1)

)
⊗
(
x(2) ./ a(2)

)
.

Some remarks on this definition may be helpful. Firstly, the pairings on the left
and right of the right-hand side of Equation (23) are just complex numbers, placed
on the left and the right for purely aesthetic reasons. If we use the embeddings

D(Kq) ↪→ D(Gq) , x 7→ x ./ 1 ,
D(ANq) = O(Kq) ↪→ D(Gq) , a 7→ 1 ./ a ,

to identify D(Kq) and O(Kq) as subalgebras of D(Gq), then the product law (23)
can be seen as an exchange relation:
(25) ay =

(
y(1), a(1)

)
y(2)a(2)

(
S(y(3)), a(3)

)
,

which is analogous to the exchange relation for elements of K and AN in G. Further,
these identifications allow us to define an antipode and star operations on D(Gq),
via
(26) S(xa) = S(a)S(x) , (xa)∗ = a∗x∗ ,

followed by the exchange relation (25). The antipodes and involutions on the
right-hand sides of the equations (26) are those of O(Kq) and D(Kq), respectively.

On the other hand, the untwisted coproduct (24) corresponds to the classical
diffeomorphism G ∼= K ×AN as a Cartesian product, since morally, it corresponds
to the decomposition C0(G) = C(K)⊗C0(AN) as a tensor product of C∗-algebras.
To summarize all of this in the language of noncommutative topology, the quantum
group Gq is a Cartesian product Gq = Kq × K̂q, but with a twisted group law.

Finally, we define a unit and counit on D(Gq) by
1 = 1 ./ 1 ∈M

(
D(Kq)

)
⊗O(Kq) ,

ε = ε⊗ ε : x ./ a 7→ ε(x)ε(a) .

Theorem 6.2. The space D(Gq) defined above, equipped with the given product,
coproduct, unit, counit, antipode and involution is a multiplier ∗-Hopf algebra.

The construction in Definition 6.1 can be generalized to any dual pair of Hopf
algebras (or multiplier Hopf algebras), and is called the Drinfeld double. This is
not the construction made by Podleś and Woronowicz in [25], but rather is the
dual of it. The Woronowicz double is used to define the algebra of functions

O(Gq) := O(Kq)⊗D(Kq) ,
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equipped with a twisted coproduct and untwisted pointwise multiplication. See
[25] or [32, §4.2.4 & §4.4] for more details.

We can also define the quantized enveloping algebra UR
q (sl2(C)) by

UR
q (g) := UR

q (k) ./ O(Kq) ,

with operations given by exactly the same rules as for D(Gq) in Definition 6.1, but
replacing x, y ∈ D(Kq) with X,Y ∈ UR

q (k).
Note the important appearance of R in the notation here. This is to signify that

UR
q (g) is to be thought of as the quantized enveloping algebra of the complexification

of g = sl2(C), equipped with a real structure, i.e. with an involution ∗, which
permits us to study the unitary representation theory of SLq(2,C) as described in
Section 3.4. The algebra UR

q (g) should not be confused with the smaller algebra
Uq(g), which is just the enveloping algebra UR

q (k) without its ∗-structure, and is
only useful for studying holomorphic representations of SLq(2,C).

Thus UR
q (g) is a Hopf ∗-algebra, whose elements are multipliers of D(Gq). It

follows that modules2 for D(Gq) are also modules for UR
q (g), and vice-versa.

6.3. Representation theory of SLq(2,C). In the philosophy of quantum groups,
unitary representations of Gq = SLq(2,C) correspond to ∗-representations of the
convolution algebra D(Gq). Since D(Gq) = D(Kq) ./ O(Kq), it follows that a
representation π of D(Gq) on a vector space H amounts to
• a representation π of D(Kq) on H;
• a representation π of O(Kq) on H
• a compatibility condition between these representations determined by the

exchange relation (25), namely for any x ∈ D(Kq), a ∈ O(Kq),

(27) π(a)π(x) =
(
x(1), a(1)

)
π
(
x(2)

)
π
(
a(2)

) (
S(y(3)), a(3)

)
.

Remark 6.3. A representation of D(Kq) can equivalently be described via the
dual notion of a corepresentation of O(Kq). We will not seriously develop the
theory of corepresentations here, for details see [19, Ch.11], but let us make some
quick remarks. Given a representation of D(Gq) in the above sense, one can define
a map on H,

π̌ : H → O(Kq)⊗H ; ξ 7→ ξ(−1) ⊗ ξ(0) (Sweedlernotation)

which is dual to the representation π of D(Kq) in the sense that

π(x)ξ =
(
S(x), ξ(−1)

)
ξ(0) ,

for all x ∈ D(Kq), ξ ∈ H. Then the compatibility condition between the represen-
tations π of D(Kq) and O(Kq) transforms to the Yetter-Drinfeld condition(

π(a)ξ
)

(−1) ⊗
(
π(a)ξ

)
(0) = a(1)ξ(−1)S

(
a(3)

)
⊗ π

(
a(2)

)
ξ(0) .

For details, see [19, §13.1.3] and [32, Ch.6.2].

2Strictly speaking, we should qualify this by taking essential modules for the multiplier Hopf
algebra D(Gq). For details, see [32].
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The following is a crucial example of a D(Gq)-representation.
Fix a pair of parameters (µ, λ) ∈ 1

2Z×C. Recall that elements µ ∈ 1
2Z correspond

to integral weights of Kq. Concretely, this means that associated to µ there is a
character χµ of the Cartan subalgebra

Uq(h) = span{qnH | n ∈ Z} ⊂ Uq(sl2)

given by χµ : H 7→ 2µ, or more rigorously by

(28) χµ : qH 7→ q2µ .

This character is a ∗-homomorphism, so in fact should be seen as a unitary character
of UR

q (t) ⊂ UR
q (su(2)), where t denotes the Cartan subalgebra of the real Lie algebra

su(2). The fact that µ ∈ 1
2Z means that, classically, µ integrates to a group character

of the diagonal torus subgroup T ⊂ SU(2).
With this character, we define the set of χµ-equivariant functions on Kq,

Γ(Eµ) =
{
f ∈ O(Kq) | f(1)(H, f(2)) = 2µf

}
.

Remark 6.4. This is the q-analogue of the space of sections of the induced line
bundle Eµ = K ×T Cµ, on the symmetric space K/T , where Cµ denotes the one
dimensional representation given by the character χµ.

Put Hµ,λ = Γ(Eµ). We equip space this first with the left-regular representation
of D(Kq) as in Equation (20):

πµ,λ(x)f = fCS(x) =
(
S(x), f(1)

)
f(2) .

Next, we add a representation of O(Kq) on Hµ,λ by the twisted adjoint action:

πµ,λ(a)f =
(
q(λ+1)H , a(0)

)
a(1)fS(a(3))

Remark 6.5. Note from this formula that two representations πµ,λ and πµ,λ′ are
in fact identical if λ− λ′ ∈ 2πi

log qZ = i~−1Z, where we put ~ = log(q)/2π. Therefore,
instead of taking our parameters (µ, λ) ∈ 1

2Z × C, we may take them to be in
1
2Z× hq where we put

hq = C/i~−1Z .

The following theorem states that the above representations of D(Kq) and O(Kq)
do indeed define a representation of SLq(2,C) on Hµλ, via

πµ,λ(x ./ a) = πµ,λ(x)πµ,λ(a) ,
(
x ∈ D(Kq), a ∈ O(Kq)

)
.

It is called the principal series representation of parameter (µ, λ) ∈ 1
2Z× hq.

Theorem 6.6. Let the notation be as above.
(1) The representations πµ,λ of D(Kq) and O(Kq) are compatible in the sense

of Equation (27). Thus, Hµ,λ is a representation of D(Gq), although not
necessarily a ∗-representation.

(2) The representations extend continuously to the norm closure Hµ,λ of Hµ,λ
in L2(Kq).
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(3) The principal series representation πµ,λ is unitary, i.e., it is a ∗-representation
of D(Gq), if and only if the parameter λ is purely imaginary, meaning
λ ∈ itq where tq = R/~−1Z.

(4) The representation πµ,λ is irreducible if and only if

±λ 6∈ |µ|+ iπh−1Z + N×

In particular, the unitary representations are always irreducible.
(5) Two irreducible principal series representations Hµ,λ and Hµ′,λ′ are equi-

valent if and only if (µ, λ) = ±(µ, λ).

Remark 6.7. Item 3 in the above theorem concerns only the representation on
Hµ,λ with its inner product inherited from L2(Kq). It may be the case that the
representation on Hµ,λ becomes unitary when equipped with a different inner
product. This is the case for the complementary series of representations. The
complementary series representations will not play a role in what follows, so we
will ignore them here. For details, see [32, §6.10]

As elsewhere, these results all have analogues for a general complex semisimple
Lie group G. The parameter space becomes P× hq, where P is the integral weight
lattice and hq = h/i~−1Q∨ with Q∨ being the coroot lattice. The condition for
equivalence in the final point is replaced by requiring the pairs (µ, λ) and (µ′, λ′)
to be in the same orbit of the Weyl group on the parameter space.

For proofs of these facts, see Ch.6 of [32]. The case of SLq(2,C) is dealt with in
Sections 6.7 and 6.10.

7. The Plancherel formula for a complex semisimple quantum group

In Section 5, we discussed the problem of decomposing the regular representation
of the compact quantum group Kq into a direct sum of irreducibles. The same
question can be posed for the decomposition of the complex semisimple quantum
group Gq. In this case, and in the classical counterpart for G, the decomposition of
L2(G) is no longer a direct sum but a direct integral. This is called the problem
of the Plancherel measure because the solution relies on finding a measure on the
set of irreducible unitary representations of G or Gq. The result generalizes the
Plancherel Theorem for the group R, stating that Fourier transform is an isometric
isomorphism on L2(R) with respect to an appropriate rescaling of the Lebesgue
measure.

In the classical case, the Plancherel measure for complex semisimple Lie groups
was found by Harish-Chandra. In this section, we will discuss the analogue of
Harish-Chandra’s theorem for the quantized complex semisimple Lie groups, parti-
cularly SLq(2,C).

7.1. The classical Plancherel formula for SL(2,C). Recall that a Lie group
G is called unimodular, if the right and left invariant Haar measures coincide. This
is a property shared by all semisimple complex groups.
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We define an inner product 〈 · , · 〉 on C∞c (G) as usual by

〈f, g〉 =
∫
x∈G

f(x)g(x) dx

so that the completion of C∞c (G) with respect to this measure is L2(G).
The group SL(2,C) has a family of irreducible unitary representations Hµ,λ,

called the unitary principal series representations, which are induced from uni-
tary characters the Borel subgroup B = TAN of invertible upper triangular
matrices. They are indexed by (µ, λ) ∈ 1

2Z × a∗ in a manner analogous to the
Gq-representations in Theorem 6.6. We omit the definition here, since our real
interest is the quantum group analogue. Recall also that any unitary representation
π : G → U(H) can be integrated to a representation of the convolution algebra
C∞c (G) by the formula

(29) π(u) =
∫
g∈G

u(x)π(g) dg ∈ B(H) .

We also recall that the Hilbert space L2(H) of Hilbert-Schmidt operators is
defined as the set of operators on Hof finite norm with respect to the inner product

〈S, T 〉 = Tr(S∗T ) .

It is a fact that for every f ∈ C∞c (G), the integrated principal series representation
πµ,λ(f) is a Hilbert-Schmidt operator, for every (µ, λ) ∈ 1

2Z× a∗.

Theorem 7.1 (Plancherel Theorem for SL(2,C)). Let G = SL(2,C). The space
L2(G) decomposes as a direct integral of G×G representations

(30) L2(G) ∼=
∫ ⊕

(µ,λ)∈ 1
2 Z×a∗

L2(Hµ,λ) dm(µ, λ) ,

where the Plancherel measure is

dm = 1
2 |µ+ iλ|2 dµ dλ ,

with dµ being counting measure on 1
2Z and dλ Lebesgue measure on a∗ ∼= R. More

explicitly, if f, g ∈ C∞c (G), then

〈f, g〉L2(G) =
∫

(µ,λ)
Tr
(
πµ,λ(f)∗πµ,λ(g)

)
dm(µ, λ) .

The isomorphism (30) intertwines the G×G-representations, where (g, h) ∈ G×G
acts
• on L2(G) by the left and right regular representations λ(g)ρ(h) and
• on L2(Hµ,λ) by T 7→ πµ,λ(g)Tπµ,λ(h−1).

This is the basic case of a more general Plancherel Theorem for all semisimple
Lie groups – one of the crowning achievements of Harish-Chandra.
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In 1999, Buffenoir and Roche [2] proved an analogue of this formula for the quan-
tum group SLq(2,C), which has more recently been generalized to the q-deformations
of all complex semisimple Lie groups [30]. As previously mentioned, we do not
currently know how to generalize this to other non compact real semisimple groups,
because we do not know how to construct their q-deformations.

We shall see that the q-deformed Plancherel formula is remarkably similar to
Harish-Chandra’s formula in Theorem 7.1 above. To state it, we need the Haar
integral on SLq(2,C). Let us write G = SL(2,C) and K = SU(2), as before.

We have already defined Haar measure φ on the compact quantum group SUq(2),
see Theorem 5.2. We now define Haar measure on ANq = K̂q and on Gq.

Theorem 7.2.
(1) The quantum group

O(K̂q) = D(Kq) ∼=
⊕
m∈ 1

2 N

EndV (m) ,

which is dual to O(Kq), has a right-invariant Haar integral ψ̂ defined by

ψ̂ : x =
⊕
m

xm 7→
∑

m∈ 1
2 N

dimq V (m) Tr
(
xmπm(q−H)

)
.

(2) The quantum group O(Gq) = O(Kq)⊗O(K̂q) which is dual to D(Gq) has
a two-sided Haar integral Φ defined by

Φ(a⊗ x) = φ(a)ψ̂(x) .

As usual, the Haar integral Φ lets us define an inner product on O(Gq) by

〈f, g〉 = Φ(f∗g) ,

and we denote the completion by L2(Gq). We also have the Fourier transform,

F : O(Gq)→ D(Gq) , f 7→ f̂ = Φ( · f) .

If π is a ∗-representation of D(Gq) and f ∈ O(Gq), then the analogue of the
classical integrated representation (29) is the operator π(f̂). In fact, this would
be a more accurate notation also for the classical notion of (29), since f 7→ π(f)
defines a representation of the convolution algebra of smooth densities not the
pointwise algebra of smooth functions.

Finally, we need a twisted variant of the Hilbert-Schmidt operators, similar to
that which appeared in the Peter-Weyl formula for Kq, Theorem 5.5. Suppose π is
a ∗-representation of D(Gq) on a Hilbert space H whose restriction to D(Kq) is
integrable, so that π(qH) is a positive unbounded operator. We define L2

q(H) to be
the set of operators on H of finite norm with respect to the inner product

〈S, T 〉 = Tr
(
STπ(q−H)

)
.



QUANTIZED SEMISIMPLE LIE GROUPS 339

Remark 7.3. The unbounded operator π(q−H) in this formula is called the
Duflo-Moore operator. Hilbert-Schmidt norms twisted by a Duflo-Moore operator
can appear in the Plancherel formula for classical groups if the group is not
unimodular. Here, the quantum group SLq(2,C) is unimodular, but a Duflo-Moore
operator is nonetheless necessary.

Theorem 7.4 (Plancherel Theorem for SLq(2,C)). Let Gq = SLq(2,C). The space
L2(Gq) decomposes as a direct integral of D(Gq)⊗D(Gq)-representations

(31) L2(Gq) ∼=
∫ ⊕

(µ,λ)∈ 1
2 Z×itq

L2
q(Hµ,λ) dmq(µ, λ) ,

where the Plancherel measure is

dmq = 1
2 |[µ+ iλ]q|2 dµ dλ ,

with dµ being counting measure on 1
2Z and dλ being Lebesgue measure on the circle

tq ∼= R/~−1Z. More explicitly, if f, g ∈ C∞c (G), then

(32) 〈f, g〉L2(G) =
∫

(µ,λ)
Tr
(
πµ,λ(f̂)∗πµ,λ(ĝ)πµ,λ(q−H)

)
dmq(µ, λ) .

The isomorphism (31) intertwines the D(Gq)⊗D(Gq)-representations, where
u⊗ v ∈ D(Gq)⊗D(Gq) acts
• on L2(G) by the left and right regular representations,

(u⊗ v) : f 7→ (S(u), f(1))f(2)(v, f(3)) and
• on L2

q(Hµ,λ) by (u⊗ v) : T 7→ πµ,λ(u)Tπµ,λ(S(v)).

7.3. Proof of the Plancherel Formula, part I. We will finish these notes with
a very rough outline of the proof of the Plancherel Theorem above. The first thing
to note is that, under the Fourier transform, the Haar integral of O(Gq) transforms
to the counit of D(Gq), since for f ∈ O(Gq),

Φ(f) = f̂(1) = ε(f̂) .

Therefore, if we put u = f̂∗ĝ ∈ D(Gq), the desired Plancherel formula (32) becomes

(33) ε(u) =
∫

(µ,λ)∈ 1
2 Z×itq

Tr
(
πµ,λ(u)πµ,λ(q−H)

)
dmq(µ, λ) .

It now suffices to consider the case

(34) u = |vi〉〈vj | ⊗ 〈vk| · |vl〉 ∈ EndV (m)⊗ (EndV (m′))∗,

where vi is a standard basis vector for V (m), vj a dual basis vector, and similarly
vl ∈ V (m′) and vk ∈ V (m′)∗. In this notation, |vi〉〈vj | denotes the rank-one
operator v 7→ 〈vj |v〉vi belonging to End(V (m)).
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With such an element u, an explicit calculation can be carried out to simplify
the right-hand side of (33). We will omit this calculation and simply state that the
result comes to∫

(µ,λ)∈ 1
2 Z×itq

Tr
(
πµ,λ(u)πµ,λ(q−H)

)
dmq(µ, λ)

= Tr
(
π0,−1(ũ)

)
− Tr

(
π1,0(ũ)

)
,(35)

where π0,−1 and π1,0 are the principal series representations of Theorem 6.6 and
ũ is some explicit element of D(Gq) related to u via the antipodes of O(Kq) and
D(Kq). For the details of this calculation, see Section 6 of [30].

Remark 7.5. The analogous calculation can be carried out for a general complex
semisimple quantum group Gq. The result comes to

(36)
∑
w∈W

(−1)|w| Tr
(
π−w.0,−w.0−2ρ(ũ)

)
,

where W is the Weyl group of g, |w| denotes the Bruhat length of w ∈W , ρ is the
half-sum of the positive roots and w.λ = w(λ+ ρ)− ρ is the ρ-shifted Weyl group
action.

The alternating sum of traces in (35) and (36) is reminiscent of the Lefschetz
trace formula, and indeed it is this that will lead to the equality (33), passing via
the Bernstein-Gelfand-Gelfand complex. This is the remaining piece of the puzzle.

7.4. Harish-Chandra bimodules. Our goal is to convert the study of unitary
representations, which is rather difficult, into the study of Verma modules, which
is more algebraic and in principle simpler.

Consider first the case of the classical group G = SL(2,C). As already mentioned
several times – see Sections 3.4 and 6 – we begin by linearizing and complexifying
the problem, thus obtaining C-linear representations of the complexified Lie algebra,
gC = g⊗R C, where g is complex to begin with.

At this point, we observe that we have an isomorphism of complex Lie algebras,

(37) gC ∼= g⊕ gop ; X 7→ (X,Xt) (for X ∈ g) ,

where Xt is the conjugate transpose of X. This in turn induces an algebra isomor-
phism
(38) U(gC) ∼= U(g)⊗ U(g)op .

As a consequence, the usual procedure of converting a unitary representation H
of G into a complex-linear representation of the complexified enveloping algebra
U(gC) can be further modified by using (38) to obtain a U(g)-bimodule structure
on H. More precisely, since Lie algebra elements act as unbounded operators, the
associated U(g)-bimodule will be given by the dense subspace H of K-finite vectors3

in H.

3A vector v in H is K-finite if π(K)v is a finite dimensional subspace. For such vectors, the
map g 7→ π(g)v is always smooth, so the derived representation of U(gC) is well-defined.
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Next consider the embedding of k into g, corresponding to the inclusion of
the maximal compact subgroup K in G. Note that elements X ∈ k = su(2) are
skew-adjoint, Xt = −X. Therefore, upon complexification we obtain an embedding
of kC into gC ∼= g⊕ gop which, according to Equation (37), is given by

(39) X 7→ (X,−X) (for X ∈ k) .

Thus, the action of X ∈ kC on the U(g)-bimodule H is given by

(40) v 7→ X ·v − v ·X .

We can extend the action (40) by universality to U(kC). This motivates the
following notation.

Definition 7.6. Let H be a U(g)-bimodule. For X ∈ U(kC), and v ∈ H, we write

XBv = X(1) · v · S(X(2)) ,

and call this the adjoint action of U(g) on H.

Note that this definition may also cause confusion, since U(kC) ∼= U(g) as an
algebra. Therefore the bimodule H is now equipped with three actions of U(g):
• a left action, denoted by X ·v,
• a right action, denoted by v ·X,
• an adjoint action of U(kC) ∼= U(g), denoted by XBv,

all of which come naturally from the unitary representation of G on H, as well as
its restriction to the maximal compact K. These three actions are compatible in
the sense that

(41) X ·v = (X(1)Bv) ·X(2) ,

as one can readily check from Definition 7.6.
As a technical point, note also that sinceK is compact, any unitary representation

of K decomposes into a direct sum of finite dimensional representations. Therefore,
the adjoint action of U(k) is a locally finite representation, meaning that for any
v ∈ H, its image U(kC)Bv is a finite dimensional subspace of H. This is typically
not true of the other two actions of U(g).

To summarize all of the above manipulations, any unitary representation H of G
gives rise to a U(g)-bimodule H equipped in addition with a locally finite “adjoint”
action of U(g) which is compatible in the sense of Equation (41). Such objects,
with a few added technical considerations, are called Harish-Chandra bimodules.

Amazingly, this whole procedure can be q-deformed. This is the result of deep
work due to Joseph and Letzer, see [17]. One notable technicality is that the algebra
Uq(g) will occasionally have to be replaced by its locally finite part FUq(g) for
the adjoint action, whereas in the classical case FU(g) and U(g) coincide. For the
non-expert, this technicality can be ignored, but we will keep it in our notation for
accuracy.

The q-analogue of the isomorphism gC ∼= g⊕g, or its extension to the enveloping
algebra (38), is as follows.
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Theorem 7.7. There is an algebra morphism
ι : UR

q (g) := UR
q (k) ./ O(Kq) ↪→ Uq(g)⊗ Uq(g)op ,

with image (
(id⊗ S)∆Uq(g)

)
.
(
FUq(g)⊗ 1

)
or equivalently, (

(id⊗ S)∆Uq(g)
)
.(1⊗ FUq(g)).

To explain this theorem, the first component (id ⊗ S)∆Uq(g) in the image
corresponds to the embedding of the compact part kC in g ⊕ gop that we saw
in Equation (39), and indeed the morphism ι restricted to the compact part
UR
q (k) ⊆ UR

q (g) is given by
ι : X 7→ (id⊗ S)∆(X) .

The other components, with FUq(g) in the first or second leg, correspond to the
components g and gop that we saw in Equation (37). The action of ι on O(Kq) is
given in terms of the so-called l-functionals, but we will not present the details
here.

Taking inspiration from the classical case above suggests that the following
definition will be useful. The final conditions in this definition are technical points
which we will not develop.

Definition 7.8. A quantum Harish-Chandra bimodule is an FUq(g)-bimodule H
equipped with an adjoint actionB of Uq(g), which is compatible with the bimodule
structure in the following sense
(42) X · v = (X(1) → v) ·X(2) ,

for all X ∈ Uq(g) and v ∈ H, and such that
(1) the adjoint action is locally finite,
(2) the right FUq(g)-action is finitely generated,
(3) the right FUq(g)-action has annihilator of finite codimension.

Two examples will be of crucial importance.

Example 7.9. Let H be any ∗-representation of D(Gq) and hence of UR
q (g). Let

H ⊆ H be the locally finite part for the action of the subalgebra UR
q (k). Then H

inherits the structure of a quantum Harish-Chandra bimodule via the morphism ι.
In particular, the principal series representations give rise to quantum Harish-

-Chandra bimodule structures on Hµ,λ.

Example 7.10. Let M , N be Verma modules for Uq(g) as in Observation 2.8, or
more generally let M , N be modules in category O (see [17, 32] for the definition
of quantum category O). We equip the space Hom(M,N) with
• left and right actions of Y ,Z ∈ FUq(g) given by

(Y · φ · Z)(m) = Y ·
(
φ(Z ·m)

)
,

for φ ∈ Hom(M,N), m ∈M ;
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• an adjoint action of X ∈ UR
q (k) ∼= Uq(g) given by

(XBφ)(m) = X(1) ·
(
φ(Ŝ(X(2)) ·m

)
.

Now put H = FHom(M,N), the locally finite part of Hom(M,N) with respect to
the adjoint action. Then H is a quantum Harish-Chandra bimodule. At least for
the compatibility condition (42), this is an easy check.

Inspired by similar results for classical groups, Joseph and Letzter observed
that the above two examples are isomorphic in many cases. In particular, as the
next theorem shows, the unitary principal series representations can be realized as
FHom(M,N) for appropriate modules M and N . We recall from observation 2.8
that we defined the Verma module M(m) with any highest weight m ∈ C. There
is also a notion of dual Verma module M(m)∨, which we will not detail here, see
[32, §5.1.2].

Theorem 7.11 (Joseph-Letzter). Let (µ, λ) ∈ 1
2Z × itq. Then, as quantum

Harish-Chandra bimodules,
Hµ,λ ∼= FHom

(
M(`),M(r)∨

)
where µ = `− r, λ = −`− r − 1.

In fact, with some caveats, Joseph and Letzter’s isomorphism defines an equiva-
lence of categories between certain subcategories of category O and of quantum
Harish-Chandra bimodules. To be specific, let us fix ` = 0. Let O0 denote the
subcategory of category O in which all weights appearing are integral. In particular,
O0 contains the irreducible integrable Uq(g)-modules V (m), as well as all of the
Verma modules M(m) appearing in the projective resolution (7) of V (m), and also
their dual modules M(m)∨.

Joseph and Letzter prove that the map
(43) N 7→ FHom

(
M(`), N

)
is an exact functor from O0 to the category of quantum Harish-Chandra bimodules.
This means that if we apply the functor (43) to dual of the resolution (7) of the
trivial representation

0→ V (0)→M(0)∨ →M(−1)∨ → 0 ,
then we obtain a short-exact sequence of quantum Harish-Chandra bimodules,
and hence a resolution of the trivial representation of UR

q (g) by principal series
representations:
(44) 0→ C→ H0,−1 → H1,0 → 0 .

Remark 7.12. This resolution of the trivial representation by principal series
representations generalizes to all quantized complex semisimple groups. It is called
the geometric Bernstein-Gelfand-Gelfand resolution and is a quantum analogue of
a well-studied differential complex on flag varieties, see for instance [3].

The BGG complex has seen various applications in the noncommutative geometry
of quantum groups, see for instance [14, 24, 31].
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7.5. Proof of the Plancherel Formula, part II. Now we can complete the
proof of the Plancherel formula. The principal series representations appearing
in the geometric BGG resolution (44) are precisely those which appear in the
reduction of the Plancherel formula, Equation (35). Since the maps are morphisms
of UR

q (g)-representations, and hence D(Gq)-representations, they intertwine the
action of ũ on each. The Lefschetz trace principle implies that the alternating sum
of the traces is zero:

ε(ũ)− Tr
(
π0,−1(ũ)

)
+ Tr

(
π1,0(ũ)

)
= 0 .

From the definition of ũ, which we have elided (see eq (35)), one easily obtains
ε(ũ) = ε(u). Therefore, the integral (35) is equal to ε(u). This proves the formula
(33) and hence the Plancherel formula.

The above proof works equally well for the q-deformations of all complex semi-
simple Lie groups. The projective resolution (7) of the finite dimensional integral
module V (m) by Verma module has a generalization in higher rank, called the
algebraic Bernstein-Gelfand-Gelfand resolution [1]. The Verma modules which
appear in the BGG resolution are those which have highest weights in the ρ-shifted
Weyl group orbit of m:

0→ · · · →
⊕
w∈W
`(w)=k

M(w.m)→ · · · →M(m)→ V (m)→ 0 .

In the quantum case, this result is due to Heckenberger and Kolb [13].
We can then take the dual of this resolution in category O, and apply Joseph and

Letzter’s functor as Equation (44). This yields the geometric Bernstein-Gelfand-Gel-
fand complex which we mentioned in Remark 7.12. The principal series representa-
tions which arise in the geometric Bernstein-Gelfand-Gelfand resolution of the
trivial representation are again precisely those that appear in the integral calculation
(36). Therefore an application of the Lefschetz trace principal once again completes
the proof.

Appendix A. Hopf Algebras

In this section we recap some key definitions regarding Hopf algebras. For more
details see [11, 23].

Let k = R,C be our ground field.

Definition A.1. We say that A is a Hopf algebra if it has the following properties:

(1) A is an algebra (not necessarily commutative), that is, there are linear
maps, the multiplication µ : A⊗A −→ A and the unit i : k −→ A such that
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the following diagrams commute

A⊗ k id⊗i−−−−→ A⊗A

∼=
y yµ
A

id−−−−→ A

k ⊗A i⊗id−−−−→ A⊗A

∼=
y yµ
A

id−−−−→ A

A⊗A⊗A µ⊗id−−−−→ A⊗A

id⊗µ
y yµ

A⊗A µ−−−−→ A

A morphism φ : A −→ B of two algebras, with multiplication µA and µB
and unit iA and iB respectively, is a linear map such that

µB ◦ (φ⊗ φ) = φ ◦ µA , φ ◦ iA = iB .

(2) A is a coalgebra, that is, we can define two linear maps called comultiplication
∆: A −→ A⊗A and counit ε : A −→ k with the following properties:

A⊗A id⊗ε−−−−→ A⊗ k

∆
x x∼=
A

id−−−−→ A

A⊗A ε⊗id−−−−→ k ⊗A

∆
x x∼=
A

id−−−−→ A

A⊗A ∆⊗id−−−−→ A⊗A⊗A

∆
x xid⊗∆

A
∆−−−−→ A⊗A

A morphism φ : A −→ B of two coalgebras, with comultiplication ∆A, ∆B

and counit εA, εB respectively, is a linear map such that

(φ⊗ φ)◦∆A = ∆B◦φ , εB◦φ = εA .

(3) The multiplication µ and the unit i are coalgebra morphisms.
(4) The comultiplication ∆ and the counit ε are algebra morphisms.
(5) A is equipped with a bijective linear map S : A −→ A called the antipode

such that the following diagrams commute:

A⊗A S⊗id−−−−→ A⊗A

∆
x yµ
A

i◦ε−−−−→ A

A⊗A id⊗S−−−−→ A⊗A

∆
x yµ
A

i◦ε−−−−→ A

(Conditions 3 and 4 are equivalent).
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A Hopf algebra morphism is a linear map φ : A → B which is a morphism of
both the algebra and coalgebra structures of A and B and in addition it commutes
with the antipodes

SB ◦ φ = φ ◦ SA ,
where SA and SB denote, respectively, the antipodes in A and B.

If A satisfies only the first four properties is called a bialgebra.

Bialgebras do not necessarily have an antipode, but if an antipode exists it is
unique.

Let A be a coalgebra with comultiplication ∆ : A → A ⊗ A and consider the
linear map

(45)
A⊗A σ−−−−→ A⊗A

a⊗ b −−−−→ b⊗ a .
We say that A is cocommutative if

∆ = σ ◦∆ .

In the same way, if A is an algebra with multiplication µ : A × A → A, we can
express the commutativity condition as

µ = µ ◦ σ .

We will say that a Hopf algebra is commutative or cocommutative if the underlying
algebra and coalgebra structures are so.

Let A be a coalgebra with comultiplication ∆ and counit ε. We say that a
subspace I ⊂ A is a coideal if

∆(I) ⊂ I ⊗A+A⊗ I, ε(I) = 0 .
If A is a Hopf algebra, we say that I ⊂ A is a Hopf ideal if I is an ideal of the
algebra structure, a coideal of the coalgebra structure and

S(I) ⊂ I .
One can check immediately that in that case the algebra A/I inherits naturally a
Hopf algebra structure from A.

The square of the antipode of a Hopf algebra, S2, is an isomorphism of Hopf
algebras. However, it is not true in general that S2 = id. For the cases in which
the Hopf algebra is commutative or cocommutative, then we have that S2 = id.

Let A be an algebra with multiplication µ : A⊗A→ A and unit i : k → A. Let
us consider its dual space A∗. Then, the dual maps

A∗
µ∗−−−−→ (A⊗A)∗

a −−−−→ µ∗(α) = α ◦ µ ,

A∗
i∗−−−−→ k

α −−−−→ i∗(α) = α ◦ i ,
define on A∗ a coalgebra structure, provided we can identify (A⊗A)∗ ∼= A∗ ⊗A∗.
If A is finite dimensional, this is always the case. The concepts of algebra and
coalgebra are then seen to be dual concepts. This prompts the following definition:



QUANTIZED SEMISIMPLE LIE GROUPS 347

Definition A.2. We say that the two Hopf algebras H and H ′ are in duality with
each other if we have a non degenerate pairing 〈 , 〉 : H ×H ′ −→ k satisfying the
properties:

〈uv, x〉 = 〈u⊗ v,∆′(x)〉 , 〈u, xy〉 = 〈∆(u), x⊗ y〉 ,

〈1, x〉 = ε′(x) , 〈u, 1〉 = ε(u) ,

〈S(u), x〉 = 〈u, S′(x)〉 for u, v ∈ H , x, y ∈ H ′ .
∆, ε, S and ∆′, ε′, S′ denote the comultiplication, counit and antipode in H and H ′
respectively.

In the algebra community, it is typical to frame Pontryagin duality in terms
of dually paired Hopf algebras. In the C∗-algebra community, it is more common
to describe it in terms of skew-paired Hopf algebras, as we have presented in
Observation 4.4. The difference is that with a skew-pairing, the coalgebra structure
on H is replaced by its opposite via the flip map (45), which leads us also to use
the inverse of the antipode S−1 on H ′. For details, see [19, §1.2.4 & §8.2.1].
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