Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
finite element method; triangulation; minimum and maximum angle condition; shape regularity condition; bad triangles
Summary:
In an error estimation of finite element solutions to the Poisson equation, we usually impose the shape regularity assumption on the meshes to be used. In this paper, we show that even if the shape regularity condition is violated, the standard error estimation can be obtained if ``bad'' elements that violate the shape regularity or maximum angle condition are covered virtually by simplices that satisfy the minimum angle condition. A numerical experiment illustrates the theoretical result.
References:
[1] Apel, T.: Anisotropic Finite Element: Local Estimates and Applications. Advances in Numerical Mathematics. B. G. Teubner, Leipzig (1999). MR 1716824 | Zbl 0934.65121
[2] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214-226. DOI 10.1137/0713021 | MR 0455462 | Zbl 0324.65046
[3] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math. Appl. 55 (2008), 2227-2233. DOI 10.1016/j.camwa.2007.11.010 | MR 2413688 | Zbl 1142.65443
[4] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15. Springer, New York (2008). DOI 10.1007/978-0-387-75934-0 | MR 2373954 | Zbl 1135.65042
[5] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011). DOI 10.1007/978-0-387-70914-7 | MR 2759829 | Zbl 1220.46002
[6] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications 4. North Holand, Amsterdam (1978). DOI 10.1137/1.9780898719208 | MR 0520174 | Zbl 0383.65058
[7] Duprez, M., Lleras, V., Lozinski, A.: Finite element method with local damage of the mesh. ESAIM, Math. Model. Numer. Anal. 53 (2019), 1871-1891. DOI 10.1051/m2an/2019023 | MR 4019760 | Zbl 1434.65250
[8] Durán, R. G.: Error estimates for 3D narrow finite elements. Math. Comput. 68 (1999), 187-199. DOI 10.1090/S0025-5718-99-00994-1 | MR 1489970 | Zbl 0910.65078
[9] Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences 159. Springer, New York (2004). DOI 10.1007/978-1-4757-4355-5 | MR 2050138 | Zbl 1059.65103
[10] Hannukainen, A., Korotov, S., Křížek, M.: The maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. 120 (2012), 79-88. DOI 10.1007/s00211-011-0403-2 | MR 2885598 | Zbl 1255.65196
[11] Jamet, P.: Estimations d'erreur pour des éléments finis droits presque dégénérées. Rev. Franc. Automat. Inform. Rech. Operat., Analyse numer. 10 (1976), 43-60 French. DOI 10.1051/m2an/197610R100431 | MR 0455282 | Zbl 0346.65052
[12] Kobayashi, K., Tsuchiya, T.: Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation. Appl. Math., Praha 61 (2016), 121-133. DOI 10.1007/s10492-016-0125-y | MR 3470770 | Zbl 1413.65019
[13] Kobayashi, K., Tsuchiya, T.: Error analysis of Lagrange interpolation on tetrahedrons. J. Approx. Theory 249 (2020), Article ID 105302, 20 pages. DOI 10.1016/j.jat.2019.105302 | MR 4017412 | Zbl 07135029
[14] Křížek, M.: On semiregular families of triangulations and linear interpolation. Appl. Math., Praha 36 (1991), 223-232. DOI 10.21136/AM.1991.104461 | MR 1109126 | Zbl 0728.41003
[15] Křížek, M.: On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29 (1992), 513-520. DOI 10.1137/0729031 | MR 1154279 | Zbl 0755.41003
[16] Kučera, V.: On necessary and sufficient conditions for finite element convergence. Available at https://arxiv.org/abs/1601.02942 (2016), 42 pages. DOI 10.48550/arXiv.1601.02942 | MR 3700195
[17] Shenk, N. A.: Uniform error estimates for certain narrow Lagrange finite elements. Math. Comput. 63 (1994), 105-119. DOI 10.1090/S0025-5718-1994-1226816-5 | MR 1226816 | Zbl 0807.65003
Partner of
EuDML logo