Title: | Error estimation for finite element solutions on meshes that contain thin elements (English) |
Author: | Kobayashi, Kenta |
Author: | Tsuchiya, Takuya |
Language: | English |
Journal: | Applications of Mathematics |
ISSN: | 0862-7940 (print) |
ISSN: | 1572-9109 (online) |
Volume: | 69 |
Issue: | 5 |
Year: | 2024 |
Pages: | 571-588 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | In an error estimation of finite element solutions to the Poisson equation, we usually impose the shape regularity assumption on the meshes to be used. In this paper, we show that even if the shape regularity condition is violated, the standard error estimation can be obtained if ``bad'' elements that violate the shape regularity or maximum angle condition are covered virtually by simplices that satisfy the minimum angle condition. A numerical experiment illustrates the theoretical result. (English) |
Keyword: | finite element method |
Keyword: | triangulation |
Keyword: | minimum and maximum angle condition |
Keyword: | shape regularity condition |
Keyword: | bad triangles |
MSC: | 65D05 |
MSC: | 65N30 |
DOI: | 10.21136/AM.2024.0047-24 |
. | |
Date available: | 2024-11-01T12:52:08Z |
Last updated: | 2024-11-05 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152631 |
. | |
Reference: | [1] Apel, T.: Anisotropic Finite Element: Local Estimates and Applications.Advances in Numerical Mathematics. B. G. Teubner, Leipzig (1999). Zbl 0934.65121, MR 1716824 |
Reference: | [2] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method.SIAM J. Numer. Anal. 13 (1976), 214-226. Zbl 0324.65046, MR 0455462, 10.1137/0713021 |
Reference: | [3] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions.Comput. Math. Appl. 55 (2008), 2227-2233. Zbl 1142.65443, MR 2413688, 10.1016/j.camwa.2007.11.010 |
Reference: | [4] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15. Springer, New York (2008). Zbl 1135.65042, MR 2373954, 10.1007/978-0-387-75934-0 |
Reference: | [5] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext. Springer, New York (2011). Zbl 1220.46002, MR 2759829, 10.1007/978-0-387-70914-7 |
Reference: | [6] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4. North Holand, Amsterdam (1978). Zbl 0383.65058, MR 0520174, 10.1137/1.9780898719208 |
Reference: | [7] Duprez, M., Lleras, V., Lozinski, A.: Finite element method with local damage of the mesh.ESAIM, Math. Model. Numer. Anal. 53 (2019), 1871-1891. Zbl 1434.65250, MR 4019760, 10.1051/m2an/2019023 |
Reference: | [8] Durán, R. G.: Error estimates for 3D narrow finite elements.Math. Comput. 68 (1999), 187-199. Zbl 0910.65078, MR 1489970, 10.1090/S0025-5718-99-00994-1 |
Reference: | [9] Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements.Applied Mathematical Sciences 159. Springer, New York (2004). Zbl 1059.65103, MR 2050138, 10.1007/978-1-4757-4355-5 |
Reference: | [10] Hannukainen, A., Korotov, S., Křížek, M.: The maximum angle condition is not necessary for convergence of the finite element method.Numer. Math. 120 (2012), 79-88. Zbl 1255.65196, MR 2885598, 10.1007/s00211-011-0403-2 |
Reference: | [11] Jamet, P.: Estimations d'erreur pour des éléments finis droits presque dégénérées.Rev. Franc. Automat. Inform. Rech. Operat., Analyse numer. 10 (1976), 43-60 French. Zbl 0346.65052, MR 0455282, 10.1051/m2an/197610R100431 |
Reference: | [12] Kobayashi, K., Tsuchiya, T.: Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation.Appl. Math., Praha 61 (2016), 121-133. Zbl 1413.65019, MR 3470770, 10.1007/s10492-016-0125-y |
Reference: | [13] Kobayashi, K., Tsuchiya, T.: Error analysis of Lagrange interpolation on tetrahedrons.J. Approx. Theory 249 (2020), Article ID 105302, 20 pages. Zbl 07135029, MR 4017412, 10.1016/j.jat.2019.105302 |
Reference: | [14] Křížek, M.: On semiregular families of triangulations and linear interpolation.Appl. Math., Praha 36 (1991), 223-232. Zbl 0728.41003, MR 1109126, 10.21136/AM.1991.104461 |
Reference: | [15] Křížek, M.: On the maximum angle condition for linear tetrahedral elements.SIAM J. Numer. Anal. 29 (1992), 513-520. Zbl 0755.41003, MR 1154279, 10.1137/0729031 |
Reference: | [16] Kučera, V.: On necessary and sufficient conditions for finite element convergence.Available at https://arxiv.org/abs/1601.02942 (2016), 42 pages. MR 3700195, 10.48550/arXiv.1601.02942 |
Reference: | [17] Shenk, N. A.: Uniform error estimates for certain narrow Lagrange finite elements.Math. Comput. 63 (1994), 105-119. Zbl 0807.65003, MR 1226816, 10.1090/S0025-5718-1994-1226816-5 |
. |
Fulltext not available (moving wall 24 months)