Previous |  Up |  Next

Article

Title: Error estimation for finite element solutions on meshes that contain thin elements (English)
Author: Kobayashi, Kenta
Author: Tsuchiya, Takuya
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 5
Year: 2024
Pages: 571-588
Summary lang: English
.
Category: math
.
Summary: In an error estimation of finite element solutions to the Poisson equation, we usually impose the shape regularity assumption on the meshes to be used. In this paper, we show that even if the shape regularity condition is violated, the standard error estimation can be obtained if ``bad'' elements that violate the shape regularity or maximum angle condition are covered virtually by simplices that satisfy the minimum angle condition. A numerical experiment illustrates the theoretical result. (English)
Keyword: finite element method
Keyword: triangulation
Keyword: minimum and maximum angle condition
Keyword: shape regularity condition
Keyword: bad triangles
MSC: 65D05
MSC: 65N30
DOI: 10.21136/AM.2024.0047-24
.
Date available: 2024-11-01T12:52:08Z
Last updated: 2024-11-05
Stable URL: http://hdl.handle.net/10338.dmlcz/152631
.
Reference: [1] Apel, T.: Anisotropic Finite Element: Local Estimates and Applications.Advances in Numerical Mathematics. B. G. Teubner, Leipzig (1999). Zbl 0934.65121, MR 1716824
Reference: [2] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method.SIAM J. Numer. Anal. 13 (1976), 214-226. Zbl 0324.65046, MR 0455462, 10.1137/0713021
Reference: [3] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions.Comput. Math. Appl. 55 (2008), 2227-2233. Zbl 1142.65443, MR 2413688, 10.1016/j.camwa.2007.11.010
Reference: [4] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15. Springer, New York (2008). Zbl 1135.65042, MR 2373954, 10.1007/978-0-387-75934-0
Reference: [5] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext. Springer, New York (2011). Zbl 1220.46002, MR 2759829, 10.1007/978-0-387-70914-7
Reference: [6] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4. North Holand, Amsterdam (1978). Zbl 0383.65058, MR 0520174, 10.1137/1.9780898719208
Reference: [7] Duprez, M., Lleras, V., Lozinski, A.: Finite element method with local damage of the mesh.ESAIM, Math. Model. Numer. Anal. 53 (2019), 1871-1891. Zbl 1434.65250, MR 4019760, 10.1051/m2an/2019023
Reference: [8] Durán, R. G.: Error estimates for 3D narrow finite elements.Math. Comput. 68 (1999), 187-199. Zbl 0910.65078, MR 1489970, 10.1090/S0025-5718-99-00994-1
Reference: [9] Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements.Applied Mathematical Sciences 159. Springer, New York (2004). Zbl 1059.65103, MR 2050138, 10.1007/978-1-4757-4355-5
Reference: [10] Hannukainen, A., Korotov, S., Křížek, M.: The maximum angle condition is not necessary for convergence of the finite element method.Numer. Math. 120 (2012), 79-88. Zbl 1255.65196, MR 2885598, 10.1007/s00211-011-0403-2
Reference: [11] Jamet, P.: Estimations d'erreur pour des éléments finis droits presque dégénérées.Rev. Franc. Automat. Inform. Rech. Operat., Analyse numer. 10 (1976), 43-60 French. Zbl 0346.65052, MR 0455282, 10.1051/m2an/197610R100431
Reference: [12] Kobayashi, K., Tsuchiya, T.: Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation.Appl. Math., Praha 61 (2016), 121-133. Zbl 1413.65019, MR 3470770, 10.1007/s10492-016-0125-y
Reference: [13] Kobayashi, K., Tsuchiya, T.: Error analysis of Lagrange interpolation on tetrahedrons.J. Approx. Theory 249 (2020), Article ID 105302, 20 pages. Zbl 07135029, MR 4017412, 10.1016/j.jat.2019.105302
Reference: [14] Křížek, M.: On semiregular families of triangulations and linear interpolation.Appl. Math., Praha 36 (1991), 223-232. Zbl 0728.41003, MR 1109126, 10.21136/AM.1991.104461
Reference: [15] Křížek, M.: On the maximum angle condition for linear tetrahedral elements.SIAM J. Numer. Anal. 29 (1992), 513-520. Zbl 0755.41003, MR 1154279, 10.1137/0729031
Reference: [16] Kučera, V.: On necessary and sufficient conditions for finite element convergence.Available at https://arxiv.org/abs/1601.02942 (2016), 42 pages. MR 3700195, 10.48550/arXiv.1601.02942
Reference: [17] Shenk, N. A.: Uniform error estimates for certain narrow Lagrange finite elements.Math. Comput. 63 (1994), 105-119. Zbl 0807.65003, MR 1226816, 10.1090/S0025-5718-1994-1226816-5
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo