[2] Clifford A. H., Preston G. B.:
The Algebraic Theory of Semigroups. Vol. I. Mathematical Surveys, 7, American Mathematical Society, Providence, 1961.
MR 0132791
[4] Dixon J. D., Pyber L., Seress Á., Shalev A.:
Residual properties of free groups and probabilistic methods. J. Reine Angew. Math. 556 (2003), 159–172.
MR 1971144
[9] Halili R. R., Azemi M.: Topological medial semigroups. International Journal of Scientific and Innovative Mathematical Research (IJSIMR) 8 (2020), no. 10, 18–22.
[10] Kehayopulu N., Tsingelis M.:
Ordered semigroups which are both right commutative and right cancellative. Semigroup Forum 84 (2012), no. 3, 562–568.
DOI 10.1007/s00233-011-9346-2 |
MR 2917192
[11] Liebeck M. W., Shalev A.:
The probability of generating a finite simple group. Geom. Dedicata 56 (1995), no. 1, 103–113.
DOI 10.1007/BF01263616 |
MR 1338320
[12] Liebeck M. W., Shalev A.:
Classical groups, probabilistic methods, and the $(2, 3)$-generation problem. Ann. of Math. (2) 144 (1996), 77–125.
MR 1405944
[13] Liebeck M. W., Shalev A.:
Simple groups, probabilistic methods, and a conjecture of Kantor and Lubotzky. J. Algebra 184 (1996), no. 1, 31–57.
DOI 10.1006/jabr.1996.0248 |
MR 1402569
[15] Nagy A.:
Right commutative $\Delta$-semigroups. Acta Sci. Math. (Szeged) 66 (2000), no. 1–2, 33–45.
MR 1768852
[16] Nagy A.:
Special Classes of Semigroups. Advances in Mathematics (Dordrecht), 1, Kluwer Academic Publishers, Dordrecht, 2001.
MR 1777265
[17] Nagy A.:
A supplement to my paper “Right commutative $\Delta$-semigroups". Acta Scie. Math. (Szeged) 71 (2005), no. 1–2, 35–36.
MR 2160353
[20] Nagy A., Tóth C.:
On the probability that two elements of a finite semigroup have the same right matrix. Comment. Math. Univ. Carolin. 63 (2022), no. 1, 21–31.
MR 4445735
[21] Pálfy P. P., Szalay M.:
On a problem of P. Turán concerning Sylow subgroups. Studies in Pure Mathematics, Birkh\H auser, Basel, 1983, pages 531–542.
MR 0820249
[22] Petrich M.:
Lectures in Semigroups. John Wiley and Sons, London, 1977.
MR 0466270
[24] Strecker R.:
Construction of medial semigroups. Comment. Math. Univ. Carolin. 25 (1984), no. 4, 689–697.
MR 0782018
[25] Tamura N.-S., Nordahl T.:
Finitely generated left commutative semigroups are residually finite. Semigroup Forum 28 (1984), no. 1–3, 347–-354.
DOI 10.1007/BF02572495 |
MR 0729674