Title: | On a probabilistic problem on finite semigroups (English) |
Author: | Nagy, Attila |
Author: | Tóth, Csaba |
Language: | English |
Journal: | Commentationes Mathematicae Universitatis Carolinae |
ISSN: | 0010-2628 (print) |
ISSN: | 1213-7243 (online) |
Volume: | 64 |
Issue: | 4 |
Year: | 2023 |
Pages: | 395-410 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We deal with the following problem: how does the structure of a finite semigroup $S$ depend on the probability that two elements selected at random from $S$, with replacement, define the same inner right translation of $S$. We solve a subcase of this problem. As the main result of the paper, we show how to construct not necessarily finite medial semigroups in which the index of the kernel of the right regular representation equals two. (English) |
Keyword: | semigroup |
Keyword: | regular representation of semigroups |
Keyword: | medial semigroup |
MSC: | 20M10 |
MSC: | 20M15 |
DOI: | 10.14712/1213-7243.2024.006 |
. | |
Date available: | 2024-11-05T11:42:59Z |
Last updated: | 2024-11-05 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152622 |
. | |
Reference: | [1] Chrislock J. L.: On medial semigroups.J. Algebra 12 (1969), no. 1, 1–9. Zbl 0187.29102, MR 0237685, 10.1016/0021-8693(69)90013-1 |
Reference: | [2] Clifford A. H., Preston G. B.: The Algebraic Theory of Semigroups. Vol. I..Mathematical Surveys, 7, American Mathematical Society, Providence, 1961. MR 0132791 |
Reference: | [3] Dixon J. D.: The probability of generating the symmetric group.Math. Z. 110 (1969), 199–205. MR 0251758, 10.1007/BF01110210 |
Reference: | [4] Dixon J. D., Pyber L., Seress Á., Shalev A.: Residual properties of free groups and probabilistic methods.J. Reine Angew. Math. 556 (2003), 159–172. MR 1971144 |
Reference: | [5] Eberhard S., Virchow S.-C.: The Probability of Generating the Symmetric Group.Combinatorica 39 (2019), no. 2, 273–288. MR 3962902, 10.1007/s00493-017-3629-5 |
Reference: | [6] Erdös P., Rényi A.: Probabilistic Methods in Group Theory.J. Analyse Math. 14 (1965), 127–138. MR 0202831, 10.1007/BF02806383 |
Reference: | [7] Gigoń R. S.: Nilpotent elements in medial semigroups.Math. Slovaca 69 (2019), no. 5, 1033–1036. MR 4017388, 10.1515/ms-2017-0287 |
Reference: | [8] Gustafson W. H.: What is the probability that two group elements commute?.Amer. Math. Monthly 80 (1973), 1031–1034. MR 0327901, 10.1080/00029890.1973.11993437 |
Reference: | [9] Halili R. R., Azemi M.: Topological medial semigroups.International Journal of Scientific and Innovative Mathematical Research (IJSIMR) 8 (2020), no. 10, 18–22. |
Reference: | [10] Kehayopulu N., Tsingelis M.: Ordered semigroups which are both right commutative and right cancellative.Semigroup Forum 84 (2012), no. 3, 562–568. MR 2917192, 10.1007/s00233-011-9346-2 |
Reference: | [11] Liebeck M. W., Shalev A.: The probability of generating a finite simple group.Geom. Dedicata 56 (1995), no. 1, 103–113. MR 1338320, 10.1007/BF01263616 |
Reference: | [12] Liebeck M. W., Shalev A.: Classical groups, probabilistic methods, and the $(2, 3)$-generation problem.Ann. of Math. (2) 144 (1996), 77–125. MR 1405944 |
Reference: | [13] Liebeck M. W., Shalev A.: Simple groups, probabilistic methods, and a conjecture of Kantor and Lubotzky.J. Algebra 184 (1996), no. 1, 31–57. MR 1402569, 10.1006/jabr.1996.0248 |
Reference: | [14] Nagy A.: Subdirectly irreducible right commutative semigroups.Semigroup Forum 46 (1993), 187–198. MR 1200213, 10.1007/BF02573565 |
Reference: | [15] Nagy A.: Right commutative $\Delta$-semigroups.Acta Sci. Math. (Szeged) 66 (2000), no. 1–2, 33–45. MR 1768852 |
Reference: | [16] Nagy A.: Special Classes of Semigroups.Advances in Mathematics (Dordrecht), 1, Kluwer Academic Publishers, Dordrecht, 2001. MR 1777265 |
Reference: | [17] Nagy A.: A supplement to my paper “Right commutative $\Delta$-semigroups".Acta Scie. Math. (Szeged) 71 (2005), no. 1–2, 35–36. MR 2160353 |
Reference: | [18] Nagy A.: Medial permutable semigroups of the first kind.Semigroup Forum 76 (2008), no. 2, 297–308. MR 2377591, 10.1007/s00233-007-9027-3 |
Reference: | [19] Nagy A.: A construction of left equalizer simple medial semigroups.Period. Math. Hungar. 86 (2023), no. 1, 37–42. MR 4554111, 10.1007/s10998-022-00454-w |
Reference: | [20] Nagy A., Tóth C.: On the probability that two elements of a finite semigroup have the same right matrix.Comment. Math. Univ. Carolin. 63 (2022), no. 1, 21–31. MR 4445735 |
Reference: | [21] Pálfy P. P., Szalay M.: On a problem of P. Turán concerning Sylow subgroups.Studies in Pure Mathematics, Birkh\H auser, Basel, 1983, pages 531–542. MR 0820249 |
Reference: | [22] Petrich M.: Lectures in Semigroups.John Wiley and Sons, London, 1977. MR 0466270 |
Reference: | [23] Pyber L., Shalev A.: Residual properties of groups and probabilistic methods.C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 4, 275–278. MR 1854764, 10.1016/S0764-4442(01)02044-4 |
Reference: | [24] Strecker R.: Construction of medial semigroups.Comment. Math. Univ. Carolin. 25 (1984), no. 4, 689–697. MR 0782018 |
Reference: | [25] Tamura N.-S., Nordahl T.: Finitely generated left commutative semigroups are residually finite.Semigroup Forum 28 (1984), no. 1–3, 347–-354. MR 0729674, 10.1007/BF02572495 |
. |
Fulltext not available (moving wall 24 months)