Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
enumerative combinatorics; self-avoiding path; convex polygon
Summary:
The paper deals with counting sets of given magnitude whose elements are self-avoiding paths with nodes from a fixed set of points on a circle. Some of the obtained formulae provide new properties of entries in ``The On-line Encyclopaedia of Integer Sequences", while others generate new entries therein.
References:
[1] Kortezov I.: Sets of non-self-intersecting paths connecting the vertices of a convex polygon. Mathematics and Informatics 65 (2022), no. 6, 546–555. DOI 10.53656/math2022-6-4-set
[2] Kortezov I.: Sets of paths between vertices of a polygon. Mathematics Competitions 35 (2022), no. 2, 35–43.
[3] Sloane N. J. A.: The On-line Encyclopaedia of Integer Sequences. https://oeis.org/A001792
[4] Sloane N. J. A.: The On-line Encyclopaedia of Integer Sequences. https://oeis.org/A261064
[5] Sloane N. J. A.: The On-line Encyclopaedia of Integer Sequences. https://oeis.org/A308914 MR 1269167
[6] Sloane N. J. A.: The On-line Encyclopaedia of Integer Sequences. https://oeis.org/A332426
[7] Sloane N. J. A.: The On-line Encyclopaedia of Integer Sequences. https://oeis.org/A359404
[8] Sloane N. J. A.: The On-line Encyclopaedia of Integer Sequences. https://oeis.org/A359405
[9] Sloane N. J. A.: The On-line Encyclopaedia of Integer Sequences. https://oeis.org/A360021
[10] Sloane N. J. A.: The On-line Encyclopaedia of Integer Sequences. https://oeis.org/A360275
[11] Sloane N. J. A.: The On-line Encyclopaedia of Integer Sequences. https://oeis.org/A360276
[12] Sloane N. J. A.: The On-line Encyclopaedia of Integer Sequences. https://oeis.org/A360715
[13] Sloane N. J. A.: The On-line Encyclopaedia of Integer Sequences. https://oeis.org/A360716
[14] Sloane N. J. A.: The On-line Encyclopaedia of Integer Sequences. https://oeis.org/A360717
Partner of
EuDML logo