Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
hyperspace; generalized metric property; $wcs$-cover; $wcs^*$-network
Summary:
We study some generalized metric properties on the hyperspace $\mathcal F(X)$ of finite subsets of a space $X$ endowed with the Vietoris topology. We prove that $X$ has a point-star network consisting of (countable) $wcs$-covers if and only if so does $\mathcal F(X)$. Moreover, $X$ has a sequence of $wcs$-covers with property $(P)$ which is a point-star network if and only if so does $\mathcal F(X)$, where $(P)$ is one of the following properties: point-finite, point-countable, compact-finite, compact-countable, locally finite, locally countable. On the other hand, $X$ has a $wcs^*$-network with property $\sigma$-$(P)$ if and only if so does $\mathcal F(X)$. By these results, we obtain some results related to the images of metric spaces and separable metric spaces under some kinds of continuous mappings on the Vietoris hyperspace $\mathcal F(X)$.
References:
[1] An T. V., Tuyen L. Q.: On $\pi$-images of separable metric spaces and a problem of Shou Lin. Matematički Vesnik 64 (250) (2012), 297–302. MR 2965962
[2] Gao Z. M.: $\aleph$-space is invariant under perfect mappings. Questions Answer Gen. Topology 5 (1987), no. 2, 271–279. MR 0917885
[3] Ge Y.: On pseudo-sequence coverings, $\pi$-images of metric spaces. Mat. Vesnik 57 (2005), no. 3–4, 113–120. MR 2194600
[4] Ge Y., Gu J. S.: On $\pi$-images of separable metric spaces. Sci. Ser. A Math. Sci. (N.S.) 10 (2004), 65–71. MR 2127483
[5] Good C., Macías S.: Symmetric products of generalized metric spaces. Topology Appl. 206 (2016), 93–114. MR 3494434
[6] Guthrie J. A.: A characterization of $ \aleph_0$-spaces. General Topology and Appl. 1 (1971), no. 2, 105–110. DOI 10.1016/0016-660X(71)90116-4 | MR 0288726
[7] Li J. J.: Images of a Locally Separable Metric Space and Their Associated Results. Doctoral Thesis, Shandong University, Jinan, 2000 (in Chinese).
[8] Li Z.: On $\pi$-$s$-images of metric spaces. Int. J. Math. Math. Sci. 7 (2005), no. 7, 1101–1107. DOI 10.1155/IJMMS.2005.1101 | MR 2170507
[9] Lin F., Shen R., Liu C.: Generalized metric properties on hyperspaces with the Vietoris topology. Rocky Mountain J. Math. 51 (2021), no. 5, 1761–1779. MR 4382997
[10] Lin S.: Point-countable Covers and Sequence-Covering Mappings. China Science Press, Beijing, 2015 (in Chinese). MR 1939779
[11] Lin S., Tanaka Y.: Point-countable $k$-networks, closed maps, and related results. Topology Appl. 59 (1994), no. 1, 79–86. DOI 10.1016/0166-8641(94)90101-5 | MR 1293119 | Zbl 0817.54025
[12] Liu C., Lin F.: A note on hyperspaces by closed sets with Vietoris topology. Bull. Malays. Math. Sci. Soc. 45 (2022), no. 5, 1955–1974. DOI 10.1007/s40840-022-01349-2 | MR 4489545
[13] Liu C., Lin F.: Hyperspaces with a countable character of closed subset. Topology Appl. 328 (2023), Paper No. 108461, 14 pages. MR 4553037
[14] Liu C., Lin F.: The quasi-metrizability of hyperspaces. Topology Appl. 338 (2023), Paper No. 108665, 11 pages. MR 4629790
[15] Mou L., Li P., Lin S.: Regular $G_\delta$-diagonals and hyperspaces. Topology Appl. 301 (2021), Paper No. 107530, 9 pages. MR 4312980
[16] Peng L.-X., Sun Y.: A study on symmetric products of generalized metric spaces. Topology Appl. 231 (2017), 411–429. DOI 10.1016/j.topol.2017.09.036 | MR 3712980
[17] Tanaka Y., Ge Y.: Around quotient compact images of metric spaces, and symmetric spaces. Houston J. Math. 32 (2006), no. 1, 99–117. MR 2202355
[18] Tang Z., Lin S., Lin F.: Symmetric products and closed finite-to-one mappings. Topology Appl. 234 (2018), 26–45. DOI 10.1016/j.topol.2017.11.004 | MR 3739454
[19] Tuyen L. Q., Tuyen O. V.: On the $n$-fold symmetric product of a space with a $\sigma$-$(P)$-property $cn$-network ($ck$-network). Comment. Math. Univ. Carolinae 61 (2020), no. 2, 257–263. MR 4143708
[20] Tuyen L. Q., Tuyen O. V.: A note on the hyperspace of finite subsets. Fasc. Math. 65 (2021), 67–73. MR 4478558
[21] Tuyen L. Q., Tuyen O. V., Kočinac L. D. R.: The Vietoris hyperspace $\mathcal F(X)$ and certain generalized metric properties. Hacet. J. Math. Stat. 53 (2024), no. 2, 356–366. DOI 10.15672/hujms.1203236 | MR 4741786
[22] Yan P.: On strong sequence-covering compact mappings. Northeast. Math. J. 14 (1998), no. 3, 341–344. MR 1685267 | Zbl 0927.54030
Partner of
EuDML logo