[2] Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.:
Products of Finite Groups. de Gruyter Expositions in Mathematics 53. Walter de Gruyter, Berlin (2010),\99999DOI99999 10.1515/9783110220612 .
MR 2762634 |
Zbl 1206.20019
[3] Chen, Z.:
On a theorem of Srinivasan. J. Southwest Normal Univ., Ser. B 12 (1987), 1-4 Chinese.
Zbl 0732.20008
[4] Doerk, K., Hawkes, T.:
Finite Soluble Groups. de Gruyter Expositions in Mathematics 4. Walter de Gruyter, Berlin (1992),\99999DOI99999 10.1515/9783110870138 .
MR 1169099 |
Zbl 0753.20001
[5] Gorenstein, D.:
Finite Groups. Chelsea Publishing, New York (1980),\99999MR99999 0569209 .
MR 0569209 |
Zbl 0463.20012
[6] Guo, W.:
Structure Theory for Canonical Classes of Finite Groups. Springer, Berlin (2015),\99999DOI99999 10.1007/978-3-662-45747-4 .
MR 3331254 |
Zbl 1343.20021
[7] Guo, W., Shum, K.-P., Skiba, A. N.:
$X$-quasinormal subgroups. Sib. Math. J. 48 (2007), 593-605 \99999DOI99999 10.1007/s11202-007-0061-x .
MR 2355370 |
Zbl 1153.20304
[8] He, X., Li, Y., Wang, Y.:
On weakly $SS$-permutable subgroups of a finite group. Publ. Math. Debr. 77 (2010), 65-77 \99999DOI99999 10.5486/pmd.2010.4565 .
MR 2675734 |
Zbl 1214.20027
[9] Huppert, B.:
Endliche Gruppen. I. Die Grundlehren der mathematischen Wissenschaften 134. Springer, Berlin (1967), German \99999DOI99999 10.1007/978-3-642-64981-3 .
MR 0224703 |
Zbl 0217.07201
[10] Kegel, O. H.:
Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math. Z. 78 (1962), 205-221 German \99999DOI99999 10.1007/BF01195169 .
MR 0147527 |
Zbl 0102.26802
[11] Li, B.:
On $\Pi$-property and $\Pi$-normality of subgroups of finite groups. J. Algebra 334 (2011), 321-337 \99999DOI99999 10.1016/j.jalgebra.2010.12.018 .
MR 2787667 |
Zbl 1248.20020
[13] Li, S., Shen, Z., Liu, J., Liu, X.:
The influence of SS-quasinormality of some subgroups on the structure of finite groups. J. Algebra 319 (2008), 4275-4287 \99999DOI99999 10.1016/j.jalgebra.2008.01.030 .
MR 2407900 |
Zbl 1152.20019
[14] Li, Y. M., He, X. L., Wang, Y. M.:
On $s$-semipermutable subgroups of finite groups. Acta Math. Sin., Engl. Ser. 26 (2010), 2215-2222 \99999DOI99999 10.1007/s10114-010-7609-6 .
MR 2727302 |
Zbl 1209.20018
[15] Li, Y., Miao, L.:
$p$-hypercyclically embedding and $\Pi$-property of subgroups of finite groups. Commun. Algebra 45 (2017), 3468-3474 \99999DOI99999 10.1080/00927872.2016.1236939 .
MR 3609352 |
Zbl 1371.20016
[16] Li, Y., Qiao, S., Su, N., Wang, Y.:
On weakly s-semipermutable subgroups of finite groups. J. Algebra 371 (2012), 250-261 \99999DOI99999 10.1016/j.jalgebra.2012.06.025 .
MR 2975395 |
Zbl 1269.20020
[17] Liu, J., Li, S., Shen, Z., Liu, X.:
Finite groups with some CAP-subgroups. Indian J. Pure Appl. Math. 42 (2011), 145-156 \99999DOI99999 10.1007/s13226-011-0009-5 .
MR 2823263 |
Zbl 1309.20011
[18] Lu, J., Li, S.:
On $S$-semipermutable subgroups of finite groups. J. Math. Res. Expo. 29 (2009), 985-991 \99999DOI99999 10.3770/j.issn:1000-341X.2009.06.005 .
MR 2590215 |
Zbl 1212.20037
[19] Skiba, A. N.:
On weakly $s$-permutable subgroups of finite groups. J. Algebra 315 (2007), 192-209 \99999DOI99999 10.1016/j.jalgebra.2007.04.025 .
MR 2344341 |
Zbl 1130.20019
[20] Su, N., Li, Y., Wang, Y.:
A criterion of $p$-hypercyclically embedded subgroups of finite groups. J. Algebra 400 (2014), 82-93 \99999DOI99999 10.1016/j.jalgebra.2013.11.007 .
MR 3147365 |
Zbl 1300.20030
[21] Wang, Y.:
$C$-normality of groups and its properties. J. Algebra 180 (1996), 954-965 \99999DOI99999 10.1006/jabr.1996.0103 .
MR 1379219 |
Zbl 0847.20010
[22] Wang, Y., Wei, H.:
$c^\sharp$-normality of groups and its properties. Algebr. Represent. Theory 16 (2013), 193-204 \99999DOI99999 10.1007/s10468-011-9301-7 .
MR 3018185 |
Zbl 1266.20020
[23] Zhong, G., Lin, S.-X.:
On $c^\sharp$-normal subgroups of finite groups. J. Algebra Appl. 16 (2017), Article ID 1750160, 11 pages \99999DOI99999 10.1142/S0219498817501602 .
MR 3661627 |
Zbl 1396.20013