Previous |  Up |  Next

Article

Title: A note on the $\Pi $-property of some subgroups of finite groups (English)
Author: Qiu, Zhengtian
Author: Chen, Guiyun
Author: Liu, Jianjun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 3
Year: 2024
Pages: 943-953
Summary lang: English
.
Category: math
.
Summary: Let $H$ be a subgroup of a finite group $G$. We say that $H$ satisfies the $\Pi $-property in $G$ if for any chief factor $L / K$ of $G$, $ |G/K : N_{G/K}(HK/K\cap L/K )| $ is a $\pi (HK/K\cap L/K)$-number. We obtain some criteria for the $p$-supersolubility or $p$-nilpotency of a finite group and extend some known results by concerning some subgroups that satisfy the $\Pi $-property. (English)
Keyword: finite group
Keyword: $p$-supersoluble group
Keyword: $p$-nilpotent group
Keyword: the $\Pi $-property
MSC: 20D10
MSC: 20D20
idZBL: Zbl 07953688
idMR: MR4804970
DOI: 10.21136/CMJ.2024.0226-24
.
Date available: 2024-10-03T12:42:14Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152591
.
Reference: [1] Ahmad, A. Y. Alsheik, Jaraden, J. J., Skiba, A. N.: On $\mathcal U_c$-normal subgroups of finite groups.Algebra Colloq. 14 (2007), 25-36 \99999DOI99999 10.1142/S1005386707000041 . Zbl 1126.20012, MR 2278107, 10.1142/S1005386707000041
Reference: [2] Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of Finite Groups.de Gruyter Expositions in Mathematics 53. Walter de Gruyter, Berlin (2010),\99999DOI99999 10.1515/9783110220612 . Zbl 1206.20019, MR 2762634
Reference: [3] Chen, Z.: On a theorem of Srinivasan.J. Southwest Normal Univ., Ser. B 12 (1987), 1-4 Chinese. Zbl 0732.20008
Reference: [4] Doerk, K., Hawkes, T.: Finite Soluble Groups.de Gruyter Expositions in Mathematics 4. Walter de Gruyter, Berlin (1992),\99999DOI99999 10.1515/9783110870138 . Zbl 0753.20001, MR 1169099
Reference: [5] Gorenstein, D.: Finite Groups.Chelsea Publishing, New York (1980),\99999MR99999 0569209 . Zbl 0463.20012, MR 0569209
Reference: [6] Guo, W.: Structure Theory for Canonical Classes of Finite Groups.Springer, Berlin (2015),\99999DOI99999 10.1007/978-3-662-45747-4 . Zbl 1343.20021, MR 3331254
Reference: [7] Guo, W., Shum, K.-P., Skiba, A. N.: $X$-quasinormal subgroups.Sib. Math. J. 48 (2007), 593-605 \99999DOI99999 10.1007/s11202-007-0061-x . Zbl 1153.20304, MR 2355370
Reference: [8] He, X., Li, Y., Wang, Y.: On weakly $SS$-permutable subgroups of a finite group.Publ. Math. Debr. 77 (2010), 65-77 \99999DOI99999 10.5486/pmd.2010.4565 . Zbl 1214.20027, MR 2675734
Reference: [9] Huppert, B.: Endliche Gruppen. I.Die Grundlehren der mathematischen Wissenschaften 134. Springer, Berlin (1967), German \99999DOI99999 10.1007/978-3-642-64981-3 . Zbl 0217.07201, MR 0224703
Reference: [10] Kegel, O. H.: Sylow-Gruppen und Subnormalteiler endlicher Gruppen.Math. Z. 78 (1962), 205-221 German \99999DOI99999 10.1007/BF01195169 . Zbl 0102.26802, MR 0147527
Reference: [11] Li, B.: On $\Pi$-property and $\Pi$-normality of subgroups of finite groups.J. Algebra 334 (2011), 321-337 \99999DOI99999 10.1016/j.jalgebra.2010.12.018 . Zbl 1248.20020, MR 2787667
Reference: [12] Li, S., He, X.: On normally embedded subgroups of prime power order in finite groups.Commun. Algebra 36 (2008), 2333-2340. Zbl 1146.20015, MR 2418390, 10.1080/00927870701509370
Reference: [13] Li, S., Shen, Z., Liu, J., Liu, X.: The influence of SS-quasinormality of some subgroups on the structure of finite groups.J. Algebra 319 (2008), 4275-4287 \99999DOI99999 10.1016/j.jalgebra.2008.01.030 . Zbl 1152.20019, MR 2407900
Reference: [14] Li, Y. M., He, X. L., Wang, Y. M.: On $s$-semipermutable subgroups of finite groups.Acta Math. Sin., Engl. Ser. 26 (2010), 2215-2222 \99999DOI99999 10.1007/s10114-010-7609-6 . Zbl 1209.20018, MR 2727302
Reference: [15] Li, Y., Miao, L.: $p$-hypercyclically embedding and $\Pi$-property of subgroups of finite groups.Commun. Algebra 45 (2017), 3468-3474 \99999DOI99999 10.1080/00927872.2016.1236939 . Zbl 1371.20016, MR 3609352
Reference: [16] Li, Y., Qiao, S., Su, N., Wang, Y.: On weakly s-semipermutable subgroups of finite groups.J. Algebra 371 (2012), 250-261 \99999DOI99999 10.1016/j.jalgebra.2012.06.025 . Zbl 1269.20020, MR 2975395
Reference: [17] Liu, J., Li, S., Shen, Z., Liu, X.: Finite groups with some CAP-subgroups.Indian J. Pure Appl. Math. 42 (2011), 145-156 \99999DOI99999 10.1007/s13226-011-0009-5 . Zbl 1309.20011, MR 2823263
Reference: [18] Lu, J., Li, S.: On $S$-semipermutable subgroups of finite groups.J. Math. Res. Expo. 29 (2009), 985-991 \99999DOI99999 10.3770/j.issn:1000-341X.2009.06.005 . Zbl 1212.20037, MR 2590215
Reference: [19] Skiba, A. N.: On weakly $s$-permutable subgroups of finite groups.J. Algebra 315 (2007), 192-209 \99999DOI99999 10.1016/j.jalgebra.2007.04.025 . Zbl 1130.20019, MR 2344341
Reference: [20] Su, N., Li, Y., Wang, Y.: A criterion of $p$-hypercyclically embedded subgroups of finite groups.J. Algebra 400 (2014), 82-93 \99999DOI99999 10.1016/j.jalgebra.2013.11.007 . Zbl 1300.20030, MR 3147365
Reference: [21] Wang, Y.: $C$-normality of groups and its properties.J. Algebra 180 (1996), 954-965 \99999DOI99999 10.1006/jabr.1996.0103 . Zbl 0847.20010, MR 1379219
Reference: [22] Wang, Y., Wei, H.: $c^\sharp$-normality of groups and its properties.Algebr. Represent. Theory 16 (2013), 193-204 \99999DOI99999 10.1007/s10468-011-9301-7 . Zbl 1266.20020, MR 3018185
Reference: [23] Zhong, G., Lin, S.-X.: On $c^\sharp$-normal subgroups of finite groups.J. Algebra Appl. 16 (2017), Article ID 1750160, 11 pages \99999DOI99999 10.1142/S0219498817501602 . Zbl 1396.20013, MR 3661627
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo