Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
super Schrödinger algebra; simple module; U($\mathfrak {h}$)-free module, non-weight module
Summary:
We construct a family of non-weight modules which are free $U(\mathfrak {h})$-modules of rank 2 over the $N=1$ super Schrödinger algebra in $(1+1)$-dimensional spacetime. We determine the isomorphism classes of these modules. In particular, free $U(\mathfrak {h})$-modules of rank 2 over $\mathfrak {osp}(1|2)$ are also constructed and classified. Moreover, we obtain the sufficient and necessary conditions for such modules to be simple.
References:
[1] Aizawa, N.: Lowest weight representations of super Schrödinger algebras in low dimensional spacetime. J. Phys., Conf. Ser. 284 (2011), 12007-12016. DOI 10.1088/1742-6596/284/1/012007 | MR 2791131
[2] Aizawa, N.: Lowest weight representations of super Schrödinger algebras in one dimensional space. J. Math. Phys. 52 (2011), Article ID 013509, 14 pages. DOI 10.1063/1.3533920 | MR 2791131 | Zbl 1314.22006
[3] Ballesteros, A., Herranz, F., Parashar, P.: $(1+1)$ Schrödinger Lie bialgebras and their Poisson-Lie groups. J. Phys. A, Math. Gen. 33 (2000), 3445-3465. DOI 10.1088/0305-4470/33/17/304 | MR 1766687 | Zbl 0999.81028
[4] Barut, A. O., Xu, B.-W.: Conformal covariance and the probability interpretation of wave equations. Phys. Lett. A 82 (1981), 218-220. DOI 10.1016/0375-9601(81)90188-2 | MR 0608779
[5] Bavula, V., Oystaeyen, F. van: The simple modules of the Lie superalgebra $osp(1,2)$. J. Pure Appl. Algebra 150 (2000), 41-52. DOI 10.1016/S0022-4049(99)00024-9 | MR 1762919 | Zbl 1006.17009
[6] Cai, Y., Gao, Y., Wang, Y.: Simple Harish-Chandra supermodules over the super Schrödinger algebra. Sci. China Math. 58 (2015), 2477-2488. DOI 10.1007/s11425-015-5009-1 | MR 3429261 | Zbl 1403.17008
[7] Cai, Y., Tan, H., Zhao, K.: Module structures on $U(\mathcal{h})$ for Kac-Moody algebras. Sci. Sin., Math. 47 (2017), 1491-1514 Chinese. DOI 10.1360/N012016-00181 | Zbl 1487.17048
[8] Cai, Y., Tan, H., Zhao, K.: New representations of affine Kac-Moody algebras. J. Algebra 547 (2020), 95-115. DOI 10.1016/j.jalgebra.2019.11.014 | MR 4038644 | Zbl 1468.17034
[9] Cai, Y., Zhao, K.: Module structure on $\mathcal{U}(H)$ for basic Lie superalgebras. Toyama Math. J. 37 (2015), 55-72. MR 3468990 | Zbl 1395.17017
[10] Chen, H., Dai, X., Liu, M.: A family of simple non-weight modules over the twisted $N=2$ superconformal algebra. J. Pure Appl. Algebra 226 (2022), Article ID 107030, 14 pages. DOI 10.1016/j.jpaa.2022.107030 | MR 4379333 | Zbl 1510.17015
[11] Chen, H., Guo, X.: A new family of modules over the Virasoro algebra. J. Algebra 457 (2016), 73-105. DOI 10.1016/j.jalgebra.2016.02.020 | MR 3490078 | Zbl 1338.17024
[12] Chen, H., Guo, X.: Non-weight modules over the Heisenberg-Virasoro and the $W$ algebra $W(2,2)$. J. Algebra Appl. 16 (2017), Article ID 1750097, 16 pages. DOI 10.1142/S0219498817500979 | MR 3634102 | Zbl 1407.17024
[13] Chen, H., Wang, L.: A family of simple modules over the Rueda's algebras. J. Algebra 591 (2022), 360-378. DOI 10.1016/j.jalgebra.2021.10.024 | MR 4337804 | Zbl 1492.16031
[14] Chen, Q., Cai, Y.: Modules over algebras related to the Virasoro algebra. Int. J. Math. 26 (2015), Article ID 1550070, 16 pages. DOI 10.1142/S0129167X15500706 | MR 3391657 | Zbl 1371.17024
[15] Chen, Q., Han, J.: Non-weight modules over the affine-Virasoro algebra of type $A_1$. J. Math. Phys. 60 (2019), Article ID 071707, 9 pages. DOI 10.1063/1.5100918 | MR 3985468 | Zbl 1416.81077
[16] Duval, C., Horváthy, P.: On Schrödinger superalgebras. J. Math. Phys. 35 (1994), 2516-2538. DOI 10.1063/1.530521 | MR 1271944 | Zbl 0823.17002
[17] Gao, D., Ma, Y., Zhao, K.: Non-weight modules over the mirror Heisenberg-Virasoro algebra. Sci. China, Math. 65 (2022), 2243-2254. DOI 10.1007/s11425-021-1939-5 | MR 4499515 | Zbl 1501.17008
[18] Guo, X., Wang, M., Liu, X.: $U(\mathcal{h})$-free modules over the Block algebra $\mathcal{B}(q)$. J. Geom. Phys. 169 (2021), Article ID 104333, 10 pages. DOI 10.1016/j.geomphys.2021.104333 | MR 4297036 | Zbl 1476.17005
[19] Han, J., Chen, Q., Su, Y.: Modules over the algebras $Vir(a,b)$. Linear Algebra Appl. 515 (2017), 11-23. DOI 10.1016/j.laa.2016.11.002 | MR 3588533 | Zbl 1403.17028
[20] Lu, H., Sun, J., Zhang, H.: $U(\mathcal{h})$-free modules over the topological $N=2$ super-BMS$_3$ algebra. J. Math. Phys. 64 (2023), Article ID 061703, 16 pages. DOI 10.1063/5.0139069 | MR 4599954 | Zbl 1516.17023
[21] Nakayama, Y.: An index for non-relativistic superconformal field theories. J. High Energy Phys. 2008 (2008), Article ID 083, 13 pages. DOI 10.1088/1126-6708/2008/10/083 | MR 2452962 | Zbl 1245.81282
[22] Niederer, U.: The maximal kinematical invariance group of the free Schrödinger equation. Helv. Phys. Acta 45 (1972), 802-810. DOI 10.5169/seals-114417 | MR 0400948
[23] Nilsson, J.: Simple $sl_{n+1}$-module structures on $U(\mathcal{h})$. J. Algebra 424 (2015), 294-329. DOI 10.1016/j.jalgebra.2014.09.036 | MR 3293222 | Zbl 1352.17009
[24] Martín, F. J. Plaza, Prieto, C. Tejero: Construction of simple non-weight $\mathcal{sl}$(2)-modules of arbitrary rank. J. Algebra 472 (2017), 172-194. DOI 10.1016/j.jalgebra.2016.10.012 | MR 3584874 | Zbl 1407.17011
[25] Sakaguchi, M., Yoshida, K.: Super Schrödinger algebra in AdS/CFT. J. Math. Phys. 49 (2008), Article ID 102302, 13 pages. DOI 10.1063/1.2998205 | MR 2464610 | Zbl 1152.81600
[26] Su, Y., Yue, Q., Zhu, X.: Simple non-weight modules over Lie superalgebras of Block type. Available at https://arxiv.org/abs/2101.10606 (2021), 18 pages. DOI 10.48550/arXiv.2101.10606
[27] Tan, H., Zhao, K.: Irreducible modules over Witt algebras $W_{n}$ and over $\mathcal{sl}_{n+1}(\Bbb C)$. Algebr. Represent. Theory 21 (2018), 787-806. DOI 10.1007/s10468-017-9738-4 | MR 3826727 | Zbl 1446.17018
[28] Wang, H., Xia, C., Zhang, X.: Non-weight representations of Lie superalgebras of Block type. I. J. Geom. Phys. 186 (2023), Article ID 104775, 12 pages. DOI 10.1016/j.geomphys.2023.104775 | MR 4550285 | Zbl 1517.17011
[29] Wang, H., Xia, C., Zhang, X.: Non-weight representations of Lie superalgebras of Block type. II. J. Geom. Phys. 197 (2024), Article ID 105092, 12 pages. DOI 10.1016/j.geomphys.2023.105092 | MR 4685189 | Zbl 07799735
[30] Wang, Y., Zhang, H.: A class of non-weight modules over the Schrödinger-Virasoro algebras. Available at https://arxiv.org/abs/1809.05236 (2018), 16 pages. DOI 10.48550/arXiv.1809.05236 | MR 4197315
[31] Williamson, S.: On a family of non-weight modules over Witt-type Lie algebras and superalgebras. J. Algebra 569 (2021), 180-194. DOI 10.1016/j.jalgebra.2020.10.035 | MR 4187233 | Zbl 1481.17014
[32] Xie, Q., Sun, J.: Non-weight modules over $N=1$ Lie superalgebras of Block type. Forum Math. 35 (2023), 1279-1300. DOI 10.1515/forum-2022-0267 | MR 4635355 | Zbl 07739176
[33] Xie, Q., Sun, J., Yang, H.: $U(\mathcal{h})$-free modules over the super-Galilean conformal algebras. J. Math. Phys. 63 (2022), Article ID 061701, 21 pages. DOI 10.1063/5.0094552 | MR 4430920 | Zbl 1508.17032
[34] Yang, H., Yao, Y., Xia, L.: A family of non-weight modules over the super-Virasoro algebras. J. Algebra 547 (2020), 538-555. DOI 10.1016/j.jalgebra.2019.11.025 | MR 4041529 | Zbl 1461.17028
[35] Yang, H., Yao, Y., Xia, L.: On non-weight representations of the $N=2$ superconformal algebras. J. Pure Appl. Algebra 225 (2021), Article ID 106529, 19 pages. DOI 10.1016/j.jpaa.2020.106529 | MR 4137717 | Zbl 1498.17020
[36] Zhang, X., Cai, Y., Wang, Y.: Simple Harish-Chandra modules over super Schrödinger algebra in $(1+1)$ dimensional spacetime. J. Math. Phys. 55 (2014), Article ID 091701, 13 pages. DOI 10.1063/1.4894506 | MR 3390772 | Zbl 1297.81082
Partner of
EuDML logo