Previous |  Up |  Next

Article

Title: Non-weight modules over the super Schrödinger algebra (English)
Author: Wang, Xinyue
Author: Chen, Liangyun
Author: Ma, Yao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 3
Year: 2024
Pages: 647-664
Summary lang: English
.
Category: math
.
Summary: We construct a family of non-weight modules which are free $U(\mathfrak {h})$-modules of rank 2 over the $N=1$ super Schrödinger algebra in $(1+1)$-dimensional spacetime. We determine the isomorphism classes of these modules. In particular, free $U(\mathfrak {h})$-modules of rank 2 over $\mathfrak {osp}(1|2)$ are also constructed and classified. Moreover, we obtain the sufficient and necessary conditions for such modules to be simple. (English)
Keyword: super Schrödinger algebra
Keyword: simple module
Keyword: U($\mathfrak {h}$)-free module, non-weight module
MSC: 17B10
MSC: 17B20
MSC: 17B35
MSC: 17B66
idZBL: Zbl 07953669
idMR: MR4804951
DOI: 10.21136/CMJ.2024.0030-23
.
Date available: 2024-10-03T12:31:45Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152571
.
Reference: [1] Aizawa, N.: Lowest weight representations of super Schrödinger algebras in low dimensional spacetime.J. Phys., Conf. Ser. 284 (2011), 12007-12016. MR 2791131, 10.1088/1742-6596/284/1/012007
Reference: [2] Aizawa, N.: Lowest weight representations of super Schrödinger algebras in one dimensional space.J. Math. Phys. 52 (2011), Article ID 013509, 14 pages. Zbl 1314.22006, MR 2791131, 10.1063/1.3533920
Reference: [3] Ballesteros, A., Herranz, F., Parashar, P.: $(1+1)$ Schrödinger Lie bialgebras and their Poisson-Lie groups.J. Phys. A, Math. Gen. 33 (2000), 3445-3465. Zbl 0999.81028, MR 1766687, 10.1088/0305-4470/33/17/304
Reference: [4] Barut, A. O., Xu, B.-W.: Conformal covariance and the probability interpretation of wave equations.Phys. Lett. A 82 (1981), 218-220. MR 0608779, 10.1016/0375-9601(81)90188-2
Reference: [5] Bavula, V., Oystaeyen, F. van: The simple modules of the Lie superalgebra $osp(1,2)$.J. Pure Appl. Algebra 150 (2000), 41-52. Zbl 1006.17009, MR 1762919, 10.1016/S0022-4049(99)00024-9
Reference: [6] Cai, Y., Gao, Y., Wang, Y.: Simple Harish-Chandra supermodules over the super Schrödinger algebra.Sci. China Math. 58 (2015), 2477-2488. Zbl 1403.17008, MR 3429261, 10.1007/s11425-015-5009-1
Reference: [7] Cai, Y., Tan, H., Zhao, K.: Module structures on $U(\mathcal{h})$ for Kac-Moody algebras.Sci. Sin., Math. 47 (2017), 1491-1514 Chinese. Zbl 1487.17048, 10.1360/N012016-00181
Reference: [8] Cai, Y., Tan, H., Zhao, K.: New representations of affine Kac-Moody algebras.J. Algebra 547 (2020), 95-115. Zbl 1468.17034, MR 4038644, 10.1016/j.jalgebra.2019.11.014
Reference: [9] Cai, Y., Zhao, K.: Module structure on $\mathcal{U}(H)$ for basic Lie superalgebras.Toyama Math. J. 37 (2015), 55-72. Zbl 1395.17017, MR 3468990
Reference: [10] Chen, H., Dai, X., Liu, M.: A family of simple non-weight modules over the twisted $N=2$ superconformal algebra.J. Pure Appl. Algebra 226 (2022), Article ID 107030, 14 pages. Zbl 1510.17015, MR 4379333, 10.1016/j.jpaa.2022.107030
Reference: [11] Chen, H., Guo, X.: A new family of modules over the Virasoro algebra.J. Algebra 457 (2016), 73-105. Zbl 1338.17024, MR 3490078, 10.1016/j.jalgebra.2016.02.020
Reference: [12] Chen, H., Guo, X.: Non-weight modules over the Heisenberg-Virasoro and the $W$ algebra $W(2,2)$.J. Algebra Appl. 16 (2017), Article ID 1750097, 16 pages. Zbl 1407.17024, MR 3634102, 10.1142/S0219498817500979
Reference: [13] Chen, H., Wang, L.: A family of simple modules over the Rueda's algebras.J. Algebra 591 (2022), 360-378. Zbl 1492.16031, MR 4337804, 10.1016/j.jalgebra.2021.10.024
Reference: [14] Chen, Q., Cai, Y.: Modules over algebras related to the Virasoro algebra.Int. J. Math. 26 (2015), Article ID 1550070, 16 pages. Zbl 1371.17024, MR 3391657, 10.1142/S0129167X15500706
Reference: [15] Chen, Q., Han, J.: Non-weight modules over the affine-Virasoro algebra of type $A_1$.J. Math. Phys. 60 (2019), Article ID 071707, 9 pages. Zbl 1416.81077, MR 3985468, 10.1063/1.5100918
Reference: [16] Duval, C., Horváthy, P.: On Schrödinger superalgebras.J. Math. Phys. 35 (1994), 2516-2538. Zbl 0823.17002, MR 1271944, 10.1063/1.530521
Reference: [17] Gao, D., Ma, Y., Zhao, K.: Non-weight modules over the mirror Heisenberg-Virasoro algebra.Sci. China, Math. 65 (2022), 2243-2254. Zbl 1501.17008, MR 4499515, 10.1007/s11425-021-1939-5
Reference: [18] Guo, X., Wang, M., Liu, X.: $U(\mathcal{h})$-free modules over the Block algebra $\mathcal{B}(q)$.J. Geom. Phys. 169 (2021), Article ID 104333, 10 pages. Zbl 1476.17005, MR 4297036, 10.1016/j.geomphys.2021.104333
Reference: [19] Han, J., Chen, Q., Su, Y.: Modules over the algebras $Vir(a,b)$.Linear Algebra Appl. 515 (2017), 11-23. Zbl 1403.17028, MR 3588533, 10.1016/j.laa.2016.11.002
Reference: [20] Lu, H., Sun, J., Zhang, H.: $U(\mathcal{h})$-free modules over the topological $N=2$ super-BMS$_3$ algebra.J. Math. Phys. 64 (2023), Article ID 061703, 16 pages. Zbl 1516.17023, MR 4599954, 10.1063/5.0139069
Reference: [21] Nakayama, Y.: An index for non-relativistic superconformal field theories.J. High Energy Phys. 2008 (2008), Article ID 083, 13 pages. Zbl 1245.81282, MR 2452962, 10.1088/1126-6708/2008/10/083
Reference: [22] Niederer, U.: The maximal kinematical invariance group of the free Schrödinger equation.Helv. Phys. Acta 45 (1972), 802-810. MR 0400948, 10.5169/seals-114417
Reference: [23] Nilsson, J.: Simple $sl_{n+1}$-module structures on $U(\mathcal{h})$.J. Algebra 424 (2015), 294-329. Zbl 1352.17009, MR 3293222, 10.1016/j.jalgebra.2014.09.036
Reference: [24] Martín, F. J. Plaza, Prieto, C. Tejero: Construction of simple non-weight $\mathcal{sl}$(2)-modules of arbitrary rank.J. Algebra 472 (2017), 172-194. Zbl 1407.17011, MR 3584874, 10.1016/j.jalgebra.2016.10.012
Reference: [25] Sakaguchi, M., Yoshida, K.: Super Schrödinger algebra in AdS/CFT.J. Math. Phys. 49 (2008), Article ID 102302, 13 pages. Zbl 1152.81600, MR 2464610, 10.1063/1.2998205
Reference: [26] Su, Y., Yue, Q., Zhu, X.: Simple non-weight modules over Lie superalgebras of Block type.Available at https://arxiv.org/abs/2101.10606 (2021), 18 pages. 10.48550/arXiv.2101.10606
Reference: [27] Tan, H., Zhao, K.: Irreducible modules over Witt algebras $W_{n}$ and over $\mathcal{sl}_{n+1}(\Bbb C)$.Algebr. Represent. Theory 21 (2018), 787-806. Zbl 1446.17018, MR 3826727, 10.1007/s10468-017-9738-4
Reference: [28] Wang, H., Xia, C., Zhang, X.: Non-weight representations of Lie superalgebras of Block type. I.J. Geom. Phys. 186 (2023), Article ID 104775, 12 pages. Zbl 1517.17011, MR 4550285, 10.1016/j.geomphys.2023.104775
Reference: [29] Wang, H., Xia, C., Zhang, X.: Non-weight representations of Lie superalgebras of Block type. II.J. Geom. Phys. 197 (2024), Article ID 105092, 12 pages. Zbl 07799735, MR 4685189, 10.1016/j.geomphys.2023.105092
Reference: [30] Wang, Y., Zhang, H.: A class of non-weight modules over the Schrödinger-Virasoro algebras.Available at https://arxiv.org/abs/1809.05236 (2018), 16 pages. MR 4197315, 10.48550/arXiv.1809.05236
Reference: [31] Williamson, S.: On a family of non-weight modules over Witt-type Lie algebras and superalgebras.J. Algebra 569 (2021), 180-194. Zbl 1481.17014, MR 4187233, 10.1016/j.jalgebra.2020.10.035
Reference: [32] Xie, Q., Sun, J.: Non-weight modules over $N=1$ Lie superalgebras of Block type.Forum Math. 35 (2023), 1279-1300. Zbl 07739176, MR 4635355, 10.1515/forum-2022-0267
Reference: [33] Xie, Q., Sun, J., Yang, H.: $U(\mathcal{h})$-free modules over the super-Galilean conformal algebras.J. Math. Phys. 63 (2022), Article ID 061701, 21 pages. Zbl 1508.17032, MR 4430920, 10.1063/5.0094552
Reference: [34] Yang, H., Yao, Y., Xia, L.: A family of non-weight modules over the super-Virasoro algebras.J. Algebra 547 (2020), 538-555. Zbl 1461.17028, MR 4041529, 10.1016/j.jalgebra.2019.11.025
Reference: [35] Yang, H., Yao, Y., Xia, L.: On non-weight representations of the $N=2$ superconformal algebras.J. Pure Appl. Algebra 225 (2021), Article ID 106529, 19 pages. Zbl 1498.17020, MR 4137717, 10.1016/j.jpaa.2020.106529
Reference: [36] Zhang, X., Cai, Y., Wang, Y.: Simple Harish-Chandra modules over super Schrödinger algebra in $(1+1)$ dimensional spacetime.J. Math. Phys. 55 (2014), Article ID 091701, 13 pages. Zbl 1297.81082, MR 3390772, 10.1063/1.4894506
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo