Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
quantum energy-transport model; time-discretization; periodic boundary value problem; bipolar semiconductor
Summary:
We are concerned with a simplified quantum energy-transport model for bipolar semiconductors, which consists of nonlinear parabolic fourth-order equations for the electron and hole density; degenerate elliptic heat equations for the electron and hole temperature; and Poisson equation for the electric potential. For the periodic boundary value problem in the torus $\mathbb {T}^d$, the global existence of weak solutions is proved, based on a time-discretization, an entropy-type estimate, and a fixed-point argument. Furthermore, the semiclassical limit is obtained by using a priori estimates independent of the scaled Planck constant.
References:
[1] Chen, L., Chen, X.-Q., Jüngel, A.: Semiclassical limit in a simplified quantum energy-transport model for semiconductors. Kinet. Relat. Models 4 (2011), 1049-1062. DOI 10.3934/krm.2011.4.1049 | MR 2861585 | Zbl 1246.35025
[2] Chen, R.-C., Liu, J.-L.: A quantum corrected energy-transport model for nanoscale semiconductor devices. J. Comput. Phys. 204 (2005), 131-156. DOI 10.1016/j.jcp.2004.10.006 | Zbl 1143.82324
[3] Degond, P., Gallego, S., Méhats, F.: On quantum hydrodynamic and quantum energy transport models. Commun. Math. Sci. 5 (2007), 887-908. DOI 10.4310/CMS.2007.v5.n4.a8 | MR 2375052 | Zbl 1134.82016
[4] Degond, P., Méhats, F., Ringhofer, C.: Quantum energy-transport and drift-diffusion models. J. Stat. Phys. 118 (2005), 625-667. DOI 10.1007/s10955-004-8823-3 | MR 2123650 | Zbl 1126.82314
[5] Dong, J., Ju, Q.: A stationary solution to a 1-dimensional simplified energy-transport model for semiconductors. Chin. J. Contemp. Math. 35 (2014), 377-384. MR 3290011 | Zbl 1324.35179
[6] Dong, J., Ju, Q.: A simplified stationary energy-transport model with temperature-dependent conductivity. Nonlinear Anal., Real World Appl. 35 (2017), 61-74. DOI 10.1016/j.nonrwa.2016.10.009 | MR 3595317 | Zbl 1360.82086
[7] Grubin, H. L., Kreskovsky, J. P.: Quantum moment balance equations and resonant tunnelling structures. Solid-State Electr. 32 (1989), 1071-1075. DOI 10.1016/0038-1101(89)90192-5
[8] Hu, H., Zhang, K.: Analysis on the initial-boundary value problem of a full bipolar hydrodynamic model for semiconductors. Discrete Contin. Dyn. Syst., Ser. B 19 (2014), 1601-1626. DOI 10.3934/dcdsb.2014.19.1601 | MR 3228859 | Zbl 1304.35092
[9] Hu, H., Zhang, K.: Stability of the stationary solution of the Cauchy problem to a semiconductor full hydrodynamic model with recombination-generation rate. Kinet. Relat. Models 8 (2015), 117-151. DOI 10.3934/krm.2015.8.117 | MR 3294215 | Zbl 1332.35035
[10] Jüngel, A.: Quasi-Hydrodynamic Semiconductor Equations. Progress in Nonlinear Differential Equations and their Applications 41. Birkhäuser, Basel (2001). DOI 10.1007/978-3-0348-8334-4 | MR 1818867 | Zbl 0969.35001
[11] Jüngel, A., Matthes, D.: The Derrida-Lebowitz-Speer-Spohn equation: Existence, nonuniqueness, and decay rates of the solutions. SIAM J. Math. Anal. 39 (2008), 1996-2015. DOI 10.1137/060676878 | MR 2390322 | Zbl 1160.35428
[12] Jüngel, A., Matthes, D., Milišić, J. P.: Derivation of new quantum hydrodynamic equations using entropy minimization. SIAM J. Appl. Math. 67 (2006), 46-68. DOI 10.1137/050644823 | MR 2272614 | Zbl 1121.35117
[13] Jüngel, A., Milišić, J.-P.: A simplified quantum energy-transport model for semiconductors. Nonlinear Anal., Real World Appl. 12 (2011), 1033-1046. DOI 10.1016/j.nonrwa.2010.08.026 | MR 2736191 | Zbl 1206.35152
[14] Jüngel, A., Pinnau, R., Röhrig, E.: Existence analysis for a simplified energy-transport model for semiconductors. Math. Methods Appl. Sci. 36 (2013), 1701-1712. DOI 10.1002/mma.2715 | MR 3092288 | Zbl 1275.35124
[15] Kim, Y.-H., Ra, S., Kim, S.-C.: Asymptotic behavior of strong solutions of a simplified energy-transport model with general conductivity. Nonlinear Anal., Real World Appl. 59 (2021), Article ID 103261, 18 pages. DOI 10.1016/j.nonrwa.2020.103261 | MR 4177987 | Zbl 1468.35202
[16] Markowich, P. A., Ringhofer, C. A., Schmeiser, C.: Semiconductor Equations. Springer, Vienna (1990). DOI 10.1007/978-3-7091-6961-2 | MR 1063852 | Zbl 0765.35001
[17] Ri, J., Ra, S., Mun, K.: A solution to the simplified multi-dimensional energy-transport model with a general conductivity for semiconductors. Nonlinear Anal., Real World Appl. 69 (2023), Article ID 103748, 18 pages. DOI 10.1016/j.nonrwa.2022.103748 | MR 4483369 | Zbl 1501.35397
[18] Simon, J.: Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96. DOI 10.1007/BF01762360 | MR 0916688 | Zbl 0629.46031
[19] Wigner, E. P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev., II. Ser. 40 (1932), 749-759. DOI 10.1103/PhysRev.40.749 | Zbl 0004.38201
[20] Zamponi, N., Jüngel, A.: Global existence analysis for degenerate energy-transport models for semiconductors. J. Differ. Equations 258 (2015), 2339-2363. DOI 10.1016/j.jde.2014.12.007 | MR 3306341 | Zbl 1357.35182
[21] Zhang, G., Li, H.-L., Zhang, K.: Semiclassical and relaxation limits of bipolar quantum hydrodynamic model for semiconductors. J. Differ. Equations 245 (2008), 1433-1453 \99999DOI99999 10.1016/j.jde.2008.06.019 . DOI 10.1016/j.jde.2008.06.019 | MR 2436449 | Zbl 1154.35071
Partner of
EuDML logo