[5] Dong, J., Ju, Q.:
A stationary solution to a 1-dimensional simplified energy-transport model for semiconductors. Chin. J. Contemp. Math. 35 (2014), 377-384.
MR 3290011 |
Zbl 1324.35179
[7] Grubin, H. L., Kreskovsky, J. P.:
Quantum moment balance equations and resonant tunnelling structures. Solid-State Electr. 32 (1989), 1071-1075.
DOI 10.1016/0038-1101(89)90192-5
[9] Hu, H., Zhang, K.:
Stability of the stationary solution of the Cauchy problem to a semiconductor full hydrodynamic model with recombination-generation rate. Kinet. Relat. Models 8 (2015), 117-151.
DOI 10.3934/krm.2015.8.117 |
MR 3294215 |
Zbl 1332.35035
[11] Jüngel, A., Matthes, D.:
The Derrida-Lebowitz-Speer-Spohn equation: Existence, nonuniqueness, and decay rates of the solutions. SIAM J. Math. Anal. 39 (2008), 1996-2015.
DOI 10.1137/060676878 |
MR 2390322 |
Zbl 1160.35428
[17] Ri, J., Ra, S., Mun, K.:
A solution to the simplified multi-dimensional energy-transport model with a general conductivity for semiconductors. Nonlinear Anal., Real World Appl. 69 (2023), Article ID 103748, 18 pages.
DOI 10.1016/j.nonrwa.2022.103748 |
MR 4483369 |
Zbl 1501.35397
[21] Zhang, G., Li, H.-L., Zhang, K.:
Semiclassical and relaxation limits of bipolar quantum hydrodynamic model for semiconductors. J. Differ. Equations 245 (2008), 1433-1453 \99999DOI99999 10.1016/j.jde.2008.06.019 .
DOI 10.1016/j.jde.2008.06.019 |
MR 2436449 |
Zbl 1154.35071