Title: | Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors (English) |
Author: | Ra, Sungjin |
Author: | Jang, Choljin |
Author: | Hong, Jinmyong |
Language: | English |
Journal: | Applications of Mathematics |
ISSN: | 0862-7940 (print) |
ISSN: | 1572-9109 (online) |
Volume: | 69 |
Issue: | 4 |
Year: | 2024 |
Pages: | 513-540 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We are concerned with a simplified quantum energy-transport model for bipolar semiconductors, which consists of nonlinear parabolic fourth-order equations for the electron and hole density; degenerate elliptic heat equations for the electron and hole temperature; and Poisson equation for the electric potential. For the periodic boundary value problem in the torus $\mathbb {T}^d$, the global existence of weak solutions is proved, based on a time-discretization, an entropy-type estimate, and a fixed-point argument. Furthermore, the semiclassical limit is obtained by using a priori estimates independent of the scaled Planck constant. (English) |
Keyword: | quantum energy-transport model |
Keyword: | time-discretization |
Keyword: | periodic boundary value problem |
Keyword: | bipolar semiconductor |
MSC: | 35K20 |
MSC: | 82D37 |
idZBL: | Zbl 07953651 |
idMR: | MR4785696 |
DOI: | 10.21136/AM.2024.0016-24 |
. | |
Date available: | 2024-08-27T11:19:51Z |
Last updated: | 2024-12-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152532 |
. | |
Reference: | [1] Chen, L., Chen, X.-Q., Jüngel, A.: Semiclassical limit in a simplified quantum energy-transport model for semiconductors.Kinet. Relat. Models 4 (2011), 1049-1062. Zbl 1246.35025, MR 2861585, 10.3934/krm.2011.4.1049 |
Reference: | [2] Chen, R.-C., Liu, J.-L.: A quantum corrected energy-transport model for nanoscale semiconductor devices.J. Comput. Phys. 204 (2005), 131-156. Zbl 1143.82324, 10.1016/j.jcp.2004.10.006 |
Reference: | [3] Degond, P., Gallego, S., Méhats, F.: On quantum hydrodynamic and quantum energy transport models.Commun. Math. Sci. 5 (2007), 887-908. Zbl 1134.82016, MR 2375052, 10.4310/CMS.2007.v5.n4.a8 |
Reference: | [4] Degond, P., Méhats, F., Ringhofer, C.: Quantum energy-transport and drift-diffusion models.J. Stat. Phys. 118 (2005), 625-667. Zbl 1126.82314, MR 2123650, 10.1007/s10955-004-8823-3 |
Reference: | [5] Dong, J., Ju, Q.: A stationary solution to a 1-dimensional simplified energy-transport model for semiconductors.Chin. J. Contemp. Math. 35 (2014), 377-384. Zbl 1324.35179, MR 3290011 |
Reference: | [6] Dong, J., Ju, Q.: A simplified stationary energy-transport model with temperature-dependent conductivity.Nonlinear Anal., Real World Appl. 35 (2017), 61-74. Zbl 1360.82086, MR 3595317, 10.1016/j.nonrwa.2016.10.009 |
Reference: | [7] Grubin, H. L., Kreskovsky, J. P.: Quantum moment balance equations and resonant tunnelling structures.Solid-State Electr. 32 (1989), 1071-1075. 10.1016/0038-1101(89)90192-5 |
Reference: | [8] Hu, H., Zhang, K.: Analysis on the initial-boundary value problem of a full bipolar hydrodynamic model for semiconductors.Discrete Contin. Dyn. Syst., Ser. B 19 (2014), 1601-1626. Zbl 1304.35092, MR 3228859, 10.3934/dcdsb.2014.19.1601 |
Reference: | [9] Hu, H., Zhang, K.: Stability of the stationary solution of the Cauchy problem to a semiconductor full hydrodynamic model with recombination-generation rate.Kinet. Relat. Models 8 (2015), 117-151. Zbl 1332.35035, MR 3294215, 10.3934/krm.2015.8.117 |
Reference: | [10] Jüngel, A.: Quasi-Hydrodynamic Semiconductor Equations.Progress in Nonlinear Differential Equations and their Applications 41. Birkhäuser, Basel (2001). Zbl 0969.35001, MR 1818867, 10.1007/978-3-0348-8334-4 |
Reference: | [11] Jüngel, A., Matthes, D.: The Derrida-Lebowitz-Speer-Spohn equation: Existence, nonuniqueness, and decay rates of the solutions.SIAM J. Math. Anal. 39 (2008), 1996-2015. Zbl 1160.35428, MR 2390322, 10.1137/060676878 |
Reference: | [12] Jüngel, A., Matthes, D., Milišić, J. P.: Derivation of new quantum hydrodynamic equations using entropy minimization.SIAM J. Appl. Math. 67 (2006), 46-68. Zbl 1121.35117, MR 2272614, 10.1137/050644823 |
Reference: | [13] Jüngel, A., Milišić, J.-P.: A simplified quantum energy-transport model for semiconductors.Nonlinear Anal., Real World Appl. 12 (2011), 1033-1046. Zbl 1206.35152, MR 2736191, 10.1016/j.nonrwa.2010.08.026 |
Reference: | [14] Jüngel, A., Pinnau, R., Röhrig, E.: Existence analysis for a simplified energy-transport model for semiconductors.Math. Methods Appl. Sci. 36 (2013), 1701-1712. Zbl 1275.35124, MR 3092288, 10.1002/mma.2715 |
Reference: | [15] Kim, Y.-H., Ra, S., Kim, S.-C.: Asymptotic behavior of strong solutions of a simplified energy-transport model with general conductivity.Nonlinear Anal., Real World Appl. 59 (2021), Article ID 103261, 18 pages. Zbl 1468.35202, MR 4177987, 10.1016/j.nonrwa.2020.103261 |
Reference: | [16] Markowich, P. A., Ringhofer, C. A., Schmeiser, C.: Semiconductor Equations.Springer, Vienna (1990). Zbl 0765.35001, MR 1063852, 10.1007/978-3-7091-6961-2 |
Reference: | [17] Ri, J., Ra, S., Mun, K.: A solution to the simplified multi-dimensional energy-transport model with a general conductivity for semiconductors.Nonlinear Anal., Real World Appl. 69 (2023), Article ID 103748, 18 pages. Zbl 1501.35397, MR 4483369, 10.1016/j.nonrwa.2022.103748 |
Reference: | [18] Simon, J.: Compact sets in the space $L^p(0,T;B)$.Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96. Zbl 0629.46031, MR 0916688, 10.1007/BF01762360 |
Reference: | [19] Wigner, E. P.: On the quantum correction for thermodynamic equilibrium.Phys. Rev., II. Ser. 40 (1932), 749-759. Zbl 0004.38201, 10.1103/PhysRev.40.749 |
Reference: | [20] Zamponi, N., Jüngel, A.: Global existence analysis for degenerate energy-transport models for semiconductors.J. Differ. Equations 258 (2015), 2339-2363. Zbl 1357.35182, MR 3306341, 10.1016/j.jde.2014.12.007 |
Reference: | [21] Zhang, G., Li, H.-L., Zhang, K.: Semiclassical and relaxation limits of bipolar quantum hydrodynamic model for semiconductors.J. Differ. Equations 245 (2008), 1433-1453 \99999DOI99999 10.1016/j.jde.2008.06.019 . Zbl 1154.35071, MR 2436449, 10.1016/j.jde.2008.06.019 |
. |
Fulltext not available (moving wall 24 months)