Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
CJ ring; center; Jacobson radical; clean ring
Summary:
An element in a ring $R$ is called CJ if it is of the form $c+j$, where $c$ belongs to the center and $j$ is an element from the Jacobson radical. A ring $R$ is called CJ if each element of $R$ is CJ. We establish the basic properties of CJ rings, give several characterizations of these rings, and connect this notion with many standard elementwise properties such as clean, uniquely clean, nil clean, CN, and CU. We study the behavior of this notion under various ring extensions. In particular, we show that the subring $C+J$ is always a CJ ring and that if $R[x]$ is a CJ ring then $R$ satisfies the Köthe conjecture.
References:
[1] Amitsur, S. A.: Radicals of polynomial rings. Can. J. Math. 8 (1956), 355-361. DOI 10.4153/CJM-1956-040-9 | MR 0078345 | Zbl 0072.02404
[2] Călugăreanu, G.: UU rings. Carpathian J. Math. 31 (2015), 157-163. MR 3408811 | Zbl 1349.16059
[3] Chen, J., Nicholson, W. K., Zhou, Y.: Group rings in which every element is uniquely the sum of a unit and an idempotent. J. Algebra 306 (2006), 453-460. DOI 10.1016/j.jalgebra.2006.08.012 | MR 2271346 | Zbl 1110.16025
[4] Connell, I. G.: On the group ring. Can. J. Math. 15 (1963), 650-685. DOI 10.4153/CJM-1963-067-0 | MR 0153705 | Zbl 0121.03502
[5] Danchev, P. V.: Rings with Jacobson units. Toyama Math. J. 38 (2016), 61-74. MR 3675274 | Zbl 1368.16042
[6] Danchev, P. V., Lam, T.-Y.: Rings with unipotent units. Publ. Math. Debr. 88 (2016), 449-466. DOI 10.5486/PMD.2016.7405 | MR 3491753 | Zbl 1374.16089
[7] Diesl, A. J.: Nil clean rings. J. Algebra 383 (2013), 197-211. DOI 10.1016/j.jalgebra.2013.02.020 | MR 3037975 | Zbl 1296.16016
[8] Harmanci, A., Chen, H., Özcan, A. Ç.: Strongly nil $*$-clean rings. J. Algebra Comb. Discrete Struct. Appl. 4 (2017), 155-164. DOI 10.13069/jacodesmath.284954 | MR 3601347 | Zbl 1425.16026
[9] Hirano, Y., Tominaga, H., Yaqub, A.: On rings in which every element is uniquely expressable as a sum of a nilpotent element and a certain potent element. Math. J. Okayama Univ. 30 (1988), 33-40. MR 0976729 | Zbl 0665.16016
[10] Khashan, A. H.: $NR$-clean rings. Vietnam J. Math. 44 (2016), 749-459. DOI 10.1007/s10013-016-0197-8 | MR 3572435 | Zbl 1372.16008
[11] Krylov, P. A.: Isomorphism of generalized matrix rings. Algebra Logic 47 (2008), 258-262. DOI 10.1007/s10469-008-9016-y | MR 2484564 | Zbl 1155.16302
[12] Kurtulmaz, Y., Halicioglu, S., Harmanci, A., Chen, H.: Rings in which elements are a sum of a central and a unit element. Bull. Belg. Math. Soc. - Simon Stevin 26 (2019), 619-631. DOI 10.36045/bbms/1576206360 | MR 4042404 | Zbl 1431.15019
[13] Kurtulmaz, Y., Harmanci, A.: Rings in which elements are a sum of a central and a nilpotent element. Available at https://arxiv.org/abs/2005.12575 (2020), 15 pages. DOI 10.48550/arXiv.2005.12575 | MR 4042404
[14] Lam, T. Y.: A First Course in Noncommutative Rings. Graduate Text in Mathematics 131. Springer, New York (1991). DOI 10.1007/978-1-4684-0406-7 | MR 1125071 | Zbl 0728.16001
[15] Li, C., Zhou, Y.: On strongly $*$-clean rings. J. Algebra Appl. 10 (2011), 1363-1370. DOI 10.1142/S0219498811005221 | MR 2864582 | Zbl 1248.16030
[16] Nicholson, W. K.: Lifting idempotents and exchange rings. Trans. Am. Math. Soc. 229 (1977), 269-278. DOI 10.1090/S0002-9947-1977-0439876-2 | MR 0439876 | Zbl 0352.16006
[17] Nicholson, W. K., Zhou, Y.: Rings in which elements are uniquely the sum of an idempotent and a unit. Glasg. Math. J. 46 (2004), 227-236. DOI 10.1017/S0017089504001727 | MR 2062606 | Zbl 1057.16007
[18] Wang, Y., Zhou, H., Ren, Y.: Some properties of ring $R\{D,C\}$. Math. Pract. Theory 50 (2020), 173-181. Zbl 1463.16006
Partner of
EuDML logo