Previous |  Up |  Next

Article

Title: Rings in which elements are sum of a central element and an element in the Jacobson radical (English)
Author: Ma, Guanglin
Author: Wang, Yao
Author: Leroy, André
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 2
Year: 2024
Pages: 515-533
Summary lang: English
.
Category: math
.
Summary: An element in a ring $R$ is called CJ if it is of the form $c+j$, where $c$ belongs to the center and $j$ is an element from the Jacobson radical. A ring $R$ is called CJ if each element of $R$ is CJ. We establish the basic properties of CJ rings, give several characterizations of these rings, and connect this notion with many standard elementwise properties such as clean, uniquely clean, nil clean, CN, and CU. We study the behavior of this notion under various ring extensions. In particular, we show that the subring $C+J$ is always a CJ ring and that if $R[x]$ is a CJ ring then $R$ satisfies the Köthe conjecture. (English)
Keyword: CJ ring
Keyword: center
Keyword: Jacobson radical
Keyword: clean ring
MSC: 16N20
MSC: 16N40
MSC: 16U70
idZBL: Zbl 07893396
idMR: MR4764537
DOI: 10.21136/CMJ.2024.0433-23
.
Date available: 2024-07-10T14:55:06Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152455
.
Reference: [1] Amitsur, S. A.: Radicals of polynomial rings.Can. J. Math. 8 (1956), 355-361. Zbl 0072.02404, MR 0078345, 10.4153/CJM-1956-040-9
Reference: [2] Călugăreanu, G.: UU rings.Carpathian J. Math. 31 (2015), 157-163. Zbl 1349.16059, MR 3408811
Reference: [3] Chen, J., Nicholson, W. K., Zhou, Y.: Group rings in which every element is uniquely the sum of a unit and an idempotent.J. Algebra 306 (2006), 453-460. Zbl 1110.16025, MR 2271346, 10.1016/j.jalgebra.2006.08.012
Reference: [4] Connell, I. G.: On the group ring.Can. J. Math. 15 (1963), 650-685. Zbl 0121.03502, MR 0153705, 10.4153/CJM-1963-067-0
Reference: [5] Danchev, P. V.: Rings with Jacobson units.Toyama Math. J. 38 (2016), 61-74. Zbl 1368.16042, MR 3675274
Reference: [6] Danchev, P. V., Lam, T.-Y.: Rings with unipotent units.Publ. Math. Debr. 88 (2016), 449-466. Zbl 1374.16089, MR 3491753, 10.5486/PMD.2016.7405
Reference: [7] Diesl, A. J.: Nil clean rings.J. Algebra 383 (2013), 197-211. Zbl 1296.16016, MR 3037975, 10.1016/j.jalgebra.2013.02.020
Reference: [8] Harmanci, A., Chen, H., Özcan, A. Ç.: Strongly nil $*$-clean rings.J. Algebra Comb. Discrete Struct. Appl. 4 (2017), 155-164. Zbl 1425.16026, MR 3601347, 10.13069/jacodesmath.284954
Reference: [9] Hirano, Y., Tominaga, H., Yaqub, A.: On rings in which every element is uniquely expressable as a sum of a nilpotent element and a certain potent element.Math. J. Okayama Univ. 30 (1988), 33-40. Zbl 0665.16016, MR 0976729
Reference: [10] Khashan, A. H.: $NR$-clean rings.Vietnam J. Math. 44 (2016), 749-459. Zbl 1372.16008, MR 3572435, 10.1007/s10013-016-0197-8
Reference: [11] Krylov, P. A.: Isomorphism of generalized matrix rings.Algebra Logic 47 (2008), 258-262. Zbl 1155.16302, MR 2484564, 10.1007/s10469-008-9016-y
Reference: [12] Kurtulmaz, Y., Halicioglu, S., Harmanci, A., Chen, H.: Rings in which elements are a sum of a central and a unit element.Bull. Belg. Math. Soc. - Simon Stevin 26 (2019), 619-631. Zbl 1431.15019, MR 4042404, 10.36045/bbms/1576206360
Reference: [13] Kurtulmaz, Y., Harmanci, A.: Rings in which elements are a sum of a central and a nilpotent element.Available at https://arxiv.org/abs/2005.12575 (2020), 15 pages. MR 4042404, 10.48550/arXiv.2005.12575
Reference: [14] Lam, T. Y.: A First Course in Noncommutative Rings.Graduate Text in Mathematics 131. Springer, New York (1991). Zbl 0728.16001, MR 1125071, 10.1007/978-1-4684-0406-7
Reference: [15] Li, C., Zhou, Y.: On strongly $*$-clean rings.J. Algebra Appl. 10 (2011), 1363-1370. Zbl 1248.16030, MR 2864582, 10.1142/S0219498811005221
Reference: [16] Nicholson, W. K.: Lifting idempotents and exchange rings.Trans. Am. Math. Soc. 229 (1977), 269-278. Zbl 0352.16006, MR 0439876, 10.1090/S0002-9947-1977-0439876-2
Reference: [17] Nicholson, W. K., Zhou, Y.: Rings in which elements are uniquely the sum of an idempotent and a unit.Glasg. Math. J. 46 (2004), 227-236. Zbl 1057.16007, MR 2062606, 10.1017/S0017089504001727
Reference: [18] Wang, Y., Zhou, H., Ren, Y.: Some properties of ring $R\{D,C\}$.Math. Pract. Theory 50 (2020), 173-181. Zbl 1463.16006
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo