Summary: For any integer $n>1$, we provide a parametric family of biquadratic fields with class groups having $n$-rank at least 2. Moreover, in some cases, the $n$-rank is bigger than 4.
[2] Chakraborty, K., Hoque, A., Kishi, Y., Pandey, P. P.: Divisibility of the class numbers of imaginary quadratic fields. J. Number Theory 185 (2018), 339-348. DOI 10.1016/j.jnt.2017.09.007 | MR 3734353 | Zbl 1431.11119
[3] H. Cohen, H. W. Lenstra, Jr.: Heuristics on class groups of number fields. Number Theory Lecture Notes in Mathematics 1068. Springer, Berlin (1984), 33-62. DOI 10.1007/BFb0099440 | MR 0756082 | Zbl 0558.12002
[6] Gillibert, J., Levin, A.: A geometric approach to large class groups: A survey. Class Groups of Number Fields and Related Topics Springer, Singapore (2020), 1-15. DOI 10.1007/978-981-15-1514-9_1 | MR 4292539 | Zbl 1444.11218
[10] Murty, M. R.: Exponents of class groups of quadratic fields. Topics in Number Theory Mathematics and its Applications 467. Kluwer Academic, Dordrecht (1999), 229-239. DOI 10.1007/978-1-4613-0305-3_15 | MR 1691322 | Zbl 0993.11059
[11] Nagell, T.: Über die Klassenzahl imaginär-quadratischer Zahlkörper. Abh. Math. Semin. Univ. Hamb. 1 (1922), 140-150 German \99999JFM99999 48.0170.03. DOI 10.1007/BF02940586 | MR 3069394