Previous |  Up |  Next

Article

Title: Class groups of large ranks in biquadratic fields (English)
Author: Ram, Mahesh Kumar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 2
Year: 2024
Pages: 429-436
Summary lang: English
.
Category: math
.
Summary: For any integer $n>1$, we provide a parametric family of biquadratic fields with class groups having $n$-rank at least 2. Moreover, in some cases, the $n$-rank is bigger than 4. (English)
Keyword: ideal class group
Keyword: biquadratic field
MSC: 11R11
MSC: 11R29
idZBL: Zbl 07893391
idMR: MR4764532
DOI: 10.21136/CMJ.2024.0356-23
.
Date available: 2024-07-10T14:52:01Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152450
.
Reference: [1] Ankeny, N. C., Chowla, S.: On the divisibility of the class number of quadratic fields.Pac. J. Math. 5 (1955), 321-324. Zbl 0065.02402, MR 0085301, 10.2140/pjm.1955.5.321
Reference: [2] Chakraborty, K., Hoque, A., Kishi, Y., Pandey, P. P.: Divisibility of the class numbers of imaginary quadratic fields.J. Number Theory 185 (2018), 339-348. Zbl 1431.11119, MR 3734353, 10.1016/j.jnt.2017.09.007
Reference: [3] H. Cohen, H. W. Lenstra, Jr.: Heuristics on class groups of number fields.Number Theory Lecture Notes in Mathematics 1068. Springer, Berlin (1984), 33-62. Zbl 0558.12002, MR 0756082, 10.1007/BFb0099440
Reference: [4] Cohen, H., Martinet, J.: Heuristic study of the class groups of number fields.J. Reine Angew. Math. 404 (1990), 39-76 French. Zbl 0699.12016, MR 1037430, 10.1515/crll.1990.404.39
Reference: [5] Gillibert, J., Gillibert, P.: Galois covers of $\Bbb{P}^1$ and number fields with large class groups.Int. J. Number Theory 18 (2022), 1261-1288. Zbl 1502.11112, MR 4433140, 10.1142/S1793042122500646
Reference: [6] Gillibert, J., Levin, A.: A geometric approach to large class groups: A survey.Class Groups of Number Fields and Related Topics Springer, Singapore (2020), 1-15. Zbl 1444.11218, MR 4292539, 10.1007/978-981-15-1514-9_1
Reference: [7] Ichimura, H.: Note on the class numbers of certain real quadratic fields.Abh. Math. Sem. Univ. Hamb. 73 (2003), 281-288. Zbl 1050.11090, MR 2028521, 10.1007/BF02941283
Reference: [8] Louboutin, S. R.: On the divisibility of the class number of imaginary quadratic number fields.Proc. Am. Math. Soc. 137 (2009), 4025-4028. Zbl 1269.11111, MR 2538563, 10.1090/S0002-9939-09-10021-7
Reference: [9] Mishra, M., Schoof, R., Washington, L. C.: Class groups of real cyclotomic fields.Monatsh. Math. 195 (2021), 489-496. Zbl 1472.11277, MR 4270784, 10.1007/s00605-020-01499-0
Reference: [10] Murty, M. R.: Exponents of class groups of quadratic fields.Topics in Number Theory Mathematics and its Applications 467. Kluwer Academic, Dordrecht (1999), 229-239. Zbl 0993.11059, MR 1691322, 10.1007/978-1-4613-0305-3_15
Reference: [11] Nagell, T.: Über die Klassenzahl imaginär-quadratischer Zahlkörper.Abh. Math. Semin. Univ. Hamb. 1 (1922), 140-150 German \99999JFM99999 48.0170.03. MR 3069394, 10.1007/BF02940586
Reference: [12] Nakano, S.: On ideal class groups of algebraic number fields.J. Reine Angew. Math. 358 (1985), 61-75. Zbl 0559.12004, MR 0797674, 10.1515/crll.1985.358.61
Reference: [13] Schoof, R. J.: Class group of complex quadratic fields.Math. Comput. 41 (1983), 295-302. Zbl 0516.12002, MR 0701640, 10.2307/2007782
Reference: [14] Silverman, J. H.: The Arithmetic of Elliptic Curves.Graduate Texts in Mathematics 106. Springer, Dordrecht (2009). Zbl 1194.11005, MR 2514094, 10.1007/978-0-387-09494-6
Reference: [15] Soundararajan, K.: Divisibility of class numbers of imaginary quadratic fields.J. Lond. Math. Soc., II. Ser. 61 (2000), 681-690. Zbl 1018.11054, MR 1766097, 10.1112/S0024610700008887
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo