Previous |  Up |  Next

Article

Title: Bounds for the derivative of certain meromorphic functions and on meromorphic Bloch-type functions (English)
Author: Bhowmik, Bappaditya
Author: Sen, Sambhunath
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 2
Year: 2024
Pages: 397-414
Summary lang: English
.
Category: math
.
Summary: It is known that if $f$ is holomorphic in the open unit disc ${\mathbb D}$ of the complex plane and if, for some $c>0$, $|f(z)|\leq 1/(1-|z|^2)^c$, $z\in {\mathbb D}$, then $|f'(z)|\leq 2(c+1)/(1-|z|^2)^{c+1}$. We consider a meromorphic analogue of this result. Furthermore, we introduce and study the class of meromorphic Bloch-type functions that possess a nonzero simple pole in ${\mathbb D}$. In particular, we obtain bounds for the modulus of the Taylor coefficients of functions in this class. (English)
Keyword: Bloch function
Keyword: meromorphic function
Keyword: Landau's reduction
Keyword: Taylor coefficient
MSC: 30C50
MSC: 30C99
MSC: 30D45
idZBL: Zbl 07893389
idMR: MR4764530
DOI: 10.21136/CMJ.2024.0332-23
.
Date available: 2024-07-10T14:50:57Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152448
.
Reference: [1] Ahlfors, L. V., Grunsky, H.: Über die Blochsche Konstante.Math. Z. 42 (1937), 671-673 German. Zbl 0016.30902, MR 1545698, 10.1007/BF01160101
Reference: [2] Anderson, J. M., Clunie, J., Pommerenke, C.: On Bloch functions and normal functions.J. Reine Angew. Math. 270 (1974), 12-37. Zbl 0292.30030, MR 0361090, 10.1515/crll.1974.270.12
Reference: [3] Bhowmik, B., Sen, S.: Improved Bloch and Landau constants for meromorphic functions.Can. Math. Bull. 66 (2023), 1269-1273. Zbl 1526.30037, MR 4658218, 10.4153/S0008439523000346
Reference: [4] Bhowmik, B., Sen, S.: Landau and Bloch constants for meromorphic functions.Monatsh. Math. 201 (2023), 359-373. Zbl 1515.30072, MR 4581493, 10.1007/s00605-023-01839-w
Reference: [5] Bloch, A.: Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l'uniformisation.C.R. Acad. Sci. Paris 178 (1924), 2051-2052 French \99999JFM99999 50.0217.02. MR 1508386
Reference: [6] Bloch, A.: Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l'uniformisation.Ann. Fac. Sci. Univ. Toulouse, III. Ser. 17 (1925), 1-22 French \99999JFM99999 52.0324.02. MR 1508386, 10.5802/afst.335
Reference: [7] Bonk, M.: Extremalprobleme bei Bloch-Funktionen: Ph. D. Thesis.Technische Universität Braunschweig, Braunschweig (1988), German. Zbl 0663.30030
Reference: [8] Chen, H., Gauthier, P. M.: On Bloch's constant.J. Anal. Math. 69 (1996), 275-291. Zbl 0864.30025, MR 1428103, 10.1007/BF02787110
Reference: [9] Duren, P. L., Shaprio, H. S., Shields, A. L.: Singular measures and domains not of Smirnov type.Duke Math. J. 33 (1966), 247-254. Zbl 0174.37501, MR 0199359, 10.1215/S0012-7094-66-03328-X
Reference: [10] Graham, I., Kohr, G.: Geometric Function Theory in One and Higher Dimensions.Pure and Applied Mathematics 255. Marcel Dekker, New York (2003). Zbl 1042.30001, MR 2017933, 10.1201/9780203911624
Reference: [11] Kayumov, I. R., Wirths, K.-J.: Coefficient problems for Bloch functions.Anal. Math. Phys. 9 (2019), 1069-1085. Zbl 1430.30017, MR 4014857, 10.1007/s13324-019-00303-z
Reference: [12] Kayumov, I. R., Wirths, K.-J.: On the sum of squares of the coefficients of Bloch functions.Monatsh. Math. 190 (2019), 123-135. Zbl 1420.30015, MR 3998335, 10.1007/s00605-019-01321-6
Reference: [13] Kayumov, I. R., Wirths, K.-J.: Inequalities of Carlson type for $\alpha$-Bloch functions.Mediterr. J. Math. 17 (2020), Article ID 83, 9 pages. Zbl 1441.30049, MR 4099644, 10.1007/s00009-020-01519-1
Reference: [14] Liu, M.-C.: On the derivative of some analytic functions.Math. Z. 132 (1973), 205-208. Zbl 0257.30001, MR 0323999, 10.1007/BF01213864
Reference: [15] Pommerenke, C.: On Bloch functions.J. Lond. Math. Soc., II. Ser. 2 (1970), 689-695. Zbl 0199.39803, MR 0284574, 10.1112/jlms/2.Part_4.689
Reference: [16] : Problem N in a list of problems on Analytic Function Theory drawn up by members of a Symposium held at the University of Kentucky May 27--June 1, 1965.Bull. Am. Math. Soc. 71 (1965), 855-857. MR 1566376, 10.1090/S0002-9904-1965-11414-8
Reference: [17] Raupach, E.: Eine Abschätzungsmethode für die reellwertigen Lösungen der Differentialgleichung $\Delta \alpha=-4/(1-z\bar{z})^2$.Bonn. Math. Schr. 9 (1960), 124 pages German. Zbl 0124.04201, MR 0125234
Reference: [18] Robertson, M. S.: A distortion theorem for analytic functions.Proc. Am. Math. Soc. 28 (1971), 551-556. Zbl 0222.30022, MR 0281901, 10.1090/S0002-9939-1971-0281901-6
Reference: [19] Wirths, K.-J.: Über holomorphe Funktionen, die einer Wachstumsbeschränkung unterliegen.Arch. Math. 30 (1978), 606-612 German. Zbl 0373.30016, MR 0492223, 10.1007/BF01226108
Reference: [20] Zhaou, R.: On $\alpha$-Bloch functions and VMOA.Acta Math. Sci. 16 (1996), 349-360. Zbl 0938.30024, MR 1415692, 10.1016/S0252-9602(17)30811-1
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo