Previous |  Up |  Next

Article

Title: Maximal non-pseudovaluation subrings of an integral domain (English)
Author: Kumar, Rahul
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 2
Year: 2024
Pages: 389-395
Summary lang: English
.
Category: math
.
Summary: The notion of maximal non-pseudovaluation subring of an integral domain is introduced and studied. Let $R\subset S$ be an extension of domains. Then $R$ is called a maximal non-pseudovaluation subring of $S$ if $R$ is not a pseudovaluation subring of $S$, and for any ring $T$ such that $R \subset T\subset S$, $T$ is a pseudovaluation subring of $S$. We show that if $S$ is not local, then there no such $T$ exists between $R$ and $S$. We also characterize maximal non-pseudovaluation subrings of a local integral domain. (English)
Keyword: maximal non-pseudovaluation domain
Keyword: pseudovaluation subring
MSC: 13B02
MSC: 13B22
MSC: 13G05
idZBL: Zbl 07893388
idMR: MR4764529
DOI: 10.21136/CMJ.2024.0122-23
.
Date available: 2024-07-10T14:50:16Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152447
.
Reference: [1] Ayache, A., Echi, O.: Valuation and pseudovaluation subrings of an integral domain.Commun. Algebra 34 (2006), 2467-2483. Zbl 1105.13028, MR 2240386, 10.1080/00927870600650515
Reference: [2] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings.Math. Z. 225 (1997), 49-65. Zbl 0868.13007, MR 1451331, 10.1007/PL00004598
Reference: [3] Cahen, P.-J.: Couple d'anneaux partageant un idéal.Arch. Math. 51 (1988), 505-514 French. Zbl 0668.13005, MR 0973725, 10.1007/BF01261971
Reference: [4] Davis, E. D.: Overrings of commutative rings. III. Normal pairs.Trans. Am. Math. Soc. 182 (1973), 175-185. Zbl 0272.13004, MR 0325599, 10.1090/S0002-9947-1973-0325599-3
Reference: [5] Dechene, L. I.: Adjacent Extensions of Rings: Ph.D. Dissertation.University of California, Riverside (1978). MR 2627830
Reference: [6] Dobbs, D. E., Fontana, M.: Universally incomparable ring homomorphisms.Bull. Aust. Math. Soc. 29 (1984), 289-302. Zbl 0535.13006, MR 0748722, 10.1017/S0004972700021547
Reference: [7] Ferrand, D., Olivier, J.-P.: Homomorphismes minimaux d'anneaux.J. Algebra 16 (1970), 461-471 French. Zbl 0218.13011, MR 271079, 10.1016/0021-8693(70)90020-7
Reference: [8] Hedstrom, J. R., Houston, E. G.: Pseudo-valuation domains.Pac. J. Math. 75 (1978), 137-147. Zbl 0368.13002, MR 0485811, 10.2140/pjm.1978.75.137
Reference: [9] Jarboui, N., Trabelsi, S.: Some results about proper overrings of pseudo-valuation domains.J. Algebra Appl. 15 (2016), Article ID 1650099, 16 pages. Zbl 1343.13002, MR 3479458, 10.1142/S0219498816500997
Reference: [10] Kumar, R., Gaur, A.: Maximal non valuation domains in an integral domain.Czech. Math. J. 70 (2020), 1019-1032. Zbl 1524.13034, MR 4181793, 10.21136/CMJ.2020.0098-19
Reference: [11] Modica, M. L.: Maximal Subrings: Ph.D. Dissertation.University of Chicago, Chicago (1975). MR 2611729
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo