Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
maximal non-pseudovaluation domain; pseudovaluation subring
Summary:
The notion of maximal non-pseudovaluation subring of an integral domain is introduced and studied. Let $R\subset S$ be an extension of domains. Then $R$ is called a maximal non-pseudovaluation subring of $S$ if $R$ is not a pseudovaluation subring of $S$, and for any ring $T$ such that $R \subset T\subset S$, $T$ is a pseudovaluation subring of $S$. We show that if $S$ is not local, then there no such $T$ exists between $R$ and $S$. We also characterize maximal non-pseudovaluation subrings of a local integral domain.
References:
[1] Ayache, A., Echi, O.: Valuation and pseudovaluation subrings of an integral domain. Commun. Algebra 34 (2006), 2467-2483. DOI 10.1080/00927870600650515 | MR 2240386 | Zbl 1105.13028
[2] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings. Math. Z. 225 (1997), 49-65. DOI 10.1007/PL00004598 | MR 1451331 | Zbl 0868.13007
[3] Cahen, P.-J.: Couple d'anneaux partageant un idéal. Arch. Math. 51 (1988), 505-514 French. DOI 10.1007/BF01261971 | MR 0973725 | Zbl 0668.13005
[4] Davis, E. D.: Overrings of commutative rings. III. Normal pairs. Trans. Am. Math. Soc. 182 (1973), 175-185. DOI 10.1090/S0002-9947-1973-0325599-3 | MR 0325599 | Zbl 0272.13004
[5] Dechene, L. I.: Adjacent Extensions of Rings: Ph.D. Dissertation. University of California, Riverside (1978). MR 2627830
[6] Dobbs, D. E., Fontana, M.: Universally incomparable ring homomorphisms. Bull. Aust. Math. Soc. 29 (1984), 289-302. DOI 10.1017/S0004972700021547 | MR 0748722 | Zbl 0535.13006
[7] Ferrand, D., Olivier, J.-P.: Homomorphismes minimaux d'anneaux. J. Algebra 16 (1970), 461-471 French. DOI 10.1016/0021-8693(70)90020-7 | MR 271079 | Zbl 0218.13011
[8] Hedstrom, J. R., Houston, E. G.: Pseudo-valuation domains. Pac. J. Math. 75 (1978), 137-147. DOI 10.2140/pjm.1978.75.137 | MR 0485811 | Zbl 0368.13002
[9] Jarboui, N., Trabelsi, S.: Some results about proper overrings of pseudo-valuation domains. J. Algebra Appl. 15 (2016), Article ID 1650099, 16 pages. DOI 10.1142/S0219498816500997 | MR 3479458 | Zbl 1343.13002
[10] Kumar, R., Gaur, A.: Maximal non valuation domains in an integral domain. Czech. Math. J. 70 (2020), 1019-1032. DOI 10.21136/CMJ.2020.0098-19 | MR 4181793 | Zbl 1524.13034
[11] Modica, M. L.: Maximal Subrings: Ph.D. Dissertation. University of Chicago, Chicago (1975). MR 2611729
Partner of
EuDML logo