[1] Aravkin, A. Y., Drusvyatskiy, D., Leeuwen, T. van:
Efficient quadratic penalization through the partial minimization technique. IEEE Trans. Automat. Control 63 (2017), 7, 2131-2138.
DOI |
MR 3820213
[2] Chen, G. Y., Gan, M., Chen, C. P., Chen, L.:
A two-stage estimation algorithm based on variable projection method for gps positioning. IEEE Trans. Instrument. Measur. 67 (2018), 11, 2518-2525.
DOI 10.1109/TIM.2018.2826798
[3] Chen, G. Y., Gan, M., Chen, C. P., Li, H. X.:
Basis function matrix-based flexible coefficient autoregressive models: A framework for time series and nonlinear system modeling. IEEE Trans. Cybernet. 51 (2021), 2, 614-623.
DOI
[4] Chen, G. Y., Wang, S. Q., Gan, M., Chen, C. P.:
Insights into algorithms for separable nonlinear least squares problems. IEEE Trans. Imagw Process. 30 (2021), 2, 1207-1218.
DOI |
MR 4206220
[5] Chen, J., Ding, F.:
Modified stochastic gradient identification algorithms with fast convergence rates. J. Vibration Control 17 (2011), 9, 1281-1286.
DOI |
MR 2859041
[6] Chen, J., Ding, F., Liu, Y., Zhu, Q.:
Multi-step-length gradient iterative algorithm for equation-error type models. Systems Control Lett. 115 (2018), 15-21.
DOI |
MR 3786116
[7] Chung, J., G, J., Nagy:
An efficient iterative approach for large-scale separable nonlinear inverse problems. SIAM J. Scientif. Comput. 31 (2010), 6, 4654-4674.
DOI |
MR 2594997
[8] Cornelio, A., Piccolomini, E. L., Nagy, J. G.:
Constrained numerical optimization methods for blind deconvolution. Numer. Algorithms 65 (2014) 1, 23-42.
DOI |
MR 3147677
[9] Ding, F.:
Coupled-least-squares identification for multivariable systems. IET Control Theory Appl. 7 (2013), 1, 68-79.
DOI |
MR 3088190
[10] Ding, F., Liu, G., Liu, X. P.:
Partially coupled stochastic gradient identification methods for non-uniformly sampled systems. IEEE Trans. Automat. Control 55 (2010), 8, 1976-1981.
DOI |
MR 2681302
[11] Ding, F., Liu, Y., Bao, B.:
Gradient-based and least-squares-based iterative estimation algorithms for multi-input multi-output systems. Proc. Inst. Mechanic. Engrs, Part I: J. Systems Control Engrg. 226 (2012), 1, 43-55.
DOI
[12] Erichson, N. B., Zheng, P., Manohar, K., Brunton, S. L., Kutz, J. N., Aravkin, A. Y.:
Sparse principal component analysis via variable projection. SIAM J. Appl. Math. 80 (2020), 2, 977-1002.
DOI |
MR 4091178
[13] Gan, M., Chen, C. P., Chen, G. Y., Chen, L.:
On some separated algorithms for separable nonlinear least squares problems. IEEE Trans. Cybernet. 48 (2018), 10, 2866-2874.
DOI
[14] Gan, M., Guan, Y., Chen, G. Y., Chen, C. P.:
Recursive variable projection algorithm for a class of separable nonlinear models. IEEE Trans. Neural Netw. Learn. Syst. (2020).
MR 4332261
[15] Gan, M., Li, H. X., Peng, H.:
A variable projection approach for efficient estimation of rbf-arx model. IEEE Trans. Cybernet. 45 (2014), 3, 462-471.
DOI
[16] Gan, M., Peng, H.:
Stability analysis of rbf network-based state-dependent autoregressive model for nonlinear time series. Appl. Soft Comput. 12 (2012), 1, 174-181.
DOI
[17] Golub, G., Pereyra, V.:
Separable nonlinear least squares: the variable projection method and its applications. Inverse Problems 19 (2003), R1.
DOI |
MR 1991786
[18] Golub, G. .H, Pereyr, V.:
The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM J. Numer. Snal. 10 (1973), 2, 413-432.
DOI |
MR 0336980
[19] Haggan, V., Ozaki, T.:
Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model. Biometrika 68 (1981), 1, 189-196.
DOI |
MR 0614955
[20] Hansen, P. Ch., Nagy, J. G., O'leary, D. P.:
Deblurring images: matrices, spectra, and filtering. SIAM 2006.
MR 2271138
[21] Hussu, A:
The conjugate-gradient method for optimal control problems with undetermined final time. Int. J. Control 15 (1972), 1, 79-82.
DOI
[22] Kaufman, L.:
A variable projection method for solving separable nonlinear least squares problems. BIT Numer. Math. 15 (1975), 1, 49-57.
DOI |
MR 0501738
[23] Li, J., Zheng, Y., Lin, Z.:
Recursive identification of time-varying systems: Self-tuning and matrix rls algorithms. Syst. Control Lett. 66 (2014), 104-110.
DOI |
MR 3179836
[24] Li, M., Abubakar, A., Gao, F., Habashy, T. M:
Application of the variable projection scheme for calibration in electromagnetic data inversion. IEEE Trans. Antennas Propag. 64 (2015), 1, :332-335.
DOI |
MR 3455550
[25] Liu, Y., Ding, F., Shi, Y.:
An efficient hierarchical identification method for general dual-rate sampled-data systems. Automatica 50 (2014), 3, 962-970.
DOI |
MR 3173998
[26] Okatani, T., Deguchi, K.:
On the wiberg algorithm for matrix factorization in the presence of missing components. Int. J. Comput. Vision 72 (2007), 3, 329-337.
DOI
[27] R, M., Osborne, Smyth, G. K.:
A modified prony algorithm for exponential function fitting. SIAM J. Scient. Comput. 16 (1995), 1, :119-138.
DOI |
MR 1311681
[28] Peng, H., Ozaki, T., Toyoda, Y., Shioya, H., Nakano, K., Haggan-Ozaki, V., Mori, M.:
Rbf-arx model-based nonlinear system modeling and predictive control with application to a nox decomposition process. Control Engrg. Practice 12 (2004), 2, 191-203.
DOI
[29] Ruhe, A., Wedin, Pe. A.:
Algorithms for separable nonlinear least squares problems. SIAM Rev. 22 (1980), 3, 318-337.
DOI |
MR 0584380
[30] Sjoberg, J., Viberg, M.: Separable non-linear least-squares minimization-possible improvements for neural net fitting. In: Neural Networks for Signal Processing VII. Proc. 1997 IEEE Signal Processing Society Workshop, IEEE 1997, pp. 345-354.
[31] Stathopoulos, G., Korda, M., Jones, C. N.:
Solving the infinite-horizon constrained lqr problem using accelerated dual proximal methods. IEEE Trans. Automat. Control. 62 (2016), 4, 1752-1767.
DOI |
MR 3636331
[32] Yang, H., Gao, J., Wu, Z.:
Blur identification and image super-resolution reconstruction using an approach similar to variable projection. IEEE Signal Process. Lett. 15 (2008), 289-292.
DOI
[33] Yu, D., Chen, C. P., Xu, H.:
Fuzzy swarm control based on sliding-mode strategy with self-organized omnidirectional mobile robots system. IEEE Trans. Systems Man Cybernet.: Systems 52 (2021), 4, 2262-2274.
DOI
[34] Yu, D., Xu, H., Chen, C. P., Bai, W., Wang, Z.: Dynamic coverage control based on k-means. IEEE Trans. Industr. Electron. 2021.
[35] Zeng, J., He, T., Wang, M.:
A fast proximal gradient algorithm for decentralized composite optimization over directed networks. Systems Control Lett. 107 (2017), 36-43.
DOI |
MR 3692336