Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
cardinal invariants of the continuum; matrix forcing
Summary:
The cardinal invariants $ \mathfrak h, \mathfrak b,\mathfrak s$ of $ \mathcal P (\omega)$ are known to satisfy that $\omega_1 \leq \mathfrak h \leq\min\{\mathfrak b, \mathfrak s\}$. We prove that all inequalities can be strict. We also introduce a new upper bound for $\mathfrak h$ and show that it can be less than $\mathfrak s$. The key method is to utilize finite support matrix iterations of ccc posets following paper Ultrafilters with small generating sets by A. Blass and S. Shelah (1989).
References:
[1] Balcar B., Pelant J., Simon P.: The space of ultrafilters on $\mathbb N$ covered by nowhere dense sets. Fund. Math. 110 (1980), no. 1, pages 11–24. DOI 10.4064/fm-110-1-11-24 | MR 0600576
[2] Baumgartner J. E., Dordal P.: Adjoining dominating functions. J. Symbolic Logic 50 (1985), no. 1, 94–101. DOI 10.2307/2273792 | MR 0780528
[3] Blass A.: Applications of superperfect forcing and its relatives. Conf. Set Theory and Its Applications, Toronto, 1987, Lecture Notes in Math., 1401, Springer, Berlin, 1989, pages 18–40. DOI 10.1007/BFb0097329 | MR 1031763
[4] Blass A., Shelah S.: Ultrafilters with small generating sets. Israel J. Math. 65 (1989), no. 3, 259–271. DOI 10.1007/BF02764864 | MR 1005010
[5] Brendle J., Fischer V.: Mad families, splitting families and large continuum. J. Symbolic Logic 76 (2011), no. 1, 198–208. DOI 10.2178/jsl/1294170995 | MR 2791343
[6] Brendle J., Raghavan D.: Bounding, splitting, and almost disjointness. Ann. Pure Appl. Logic 165 (2014), no. 2, 631–651. DOI 10.1016/j.apal.2013.09.002 | MR 3129732
[7] Dow A., Shelah S.: On the cofinality of the splitting number. Indag. Math. (N.S.) 29 (2018), no. 1, 382–395. DOI 10.1016/j.indag.2017.01.010 | MR 3739621
[8] Dow A., Shelah S.: Pseudo P-points and splitting number. Arch. Math. Logic 58 (2019), no. 7–8, 1005–1027. DOI 10.1007/s00153-019-00674-x | MR 4003647
[9] Fischer V., Friedman S. D., Mejía D. A., Montoya D. C.: Coherent systems of finite support iterations. J. Symb. Log. 83 (2018), no. 1, 208–236. DOI 10.1017/jsl.2017.20 | MR 3796283
[10] Fischer V., Mejia D. A.: Splitting, bounding, and almost disjointness can be quite different. Canad. J. Math. 69 (2017), no. 3, 502–531. DOI 10.4153/CJM-2016-021-8 | MR 3679685
[11] Fischer V., Steprāns J.: The consistency of $ \mathfrak b=\kappa$ and $\mathfrak s=\kappa^+$. Fund. Math. 201 (2008), no. 3, 283–293. MR 2457482
[12] Goldstern M., Kellner J., Mejía D. A., Shelah S.: Preservation of splitting families and cardinal characteristics of the continuum. Israel J. Math. 246 (2021), no. 1, 73–129. DOI 10.1007/s11856-021-2237-7 | MR 4358274
[13] Ihoda J. I., Shelah S.: Souslin forcing. J. Symbolic Logic 53 (1988), no. 4, 1188–1207. DOI 10.2307/2274613 | MR 0973109
[14] Jech T.: Set Theory. Springer Monographs in Mathematics, Springer, Berlin, 2003. MR 1940513 | Zbl 1007.03002
[15] Kunen K., Vaughan J. E.: Handbook of Set-theoretic Topology. North-Holland Publishing Co., Amsterdam, 1984. MR 0776619 | Zbl 0674.54001
[16] Mejía D. A.: Matrix iterations and Cichon's diagram. Arch. Math. Logic 52 (2013), no. 3–4, 261–278. DOI 10.1007/s00153-012-0315-6 | MR 3047455
[17] Shelah S.: On cardinal invariants of the continuum. Conf. Axiomatic Set Theory, Boulder, 1983, Contemp. Math., 31, Amer. Math. Soc., Providence, 1984, pages 183–207. DOI 10.1090/conm/031/763901 | MR 0763901 | Zbl 0583.03035
Partner of
EuDML logo