Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
ordered Banach algebra; eventually positive element; spectral property; Perron--Frobenius property
Summary:
In ordered Banach algebras, we introduce eventually and asymptotically positive elements. We give conditions for the following spectral properties: the spectral radius belongs to the spectrum (Perron--Frobenius property); the spectral radius is the only element in the peripheral spectrum; there are positive (approximate) eigenvectors for the spectral radius. Recently such types of results have been shown for operators on Banach lattices. Our results can be viewed as a complement, since our structural assumptions on the ordered Banach algebra are much weaker.
References:
[1] Bonsall F. F., Duncan J.: Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras. London Math. Soc. Lecture Note Ser., 2, Cambridge University Press, London, 1971. MR 0288583
[2] Chaysri T., Noutsos D.: On the Perron–Frobenius theory of $M_v$-matrices and equivalent properties to eventually exponentially nonnegative matrices. Electron. J. Linear Algebra 35 (2019), 424–440. DOI 10.13001/ela.2019.5241 | MR 4023015
[3] Glück J.: Towards a Perron–Frobenius theory for eventually positive operators. J. Math. Anal. Appl. 453 (2017), no. 1, 317–337. DOI 10.1016/j.jmaa.2017.03.071 | MR 3641777
[4] Mouton S.: A spectral problem in ordered Banach algebras. Bull. Austral. Math. Soc. 67 (2003), no. 1, 131–144. DOI 10.1017/S0004972700033591 | MR 1962967
[5] Mouton S., Raubenheimer H.: More spectral theory in ordered Banach algebras. Positivity 1 (1997), no. 4, 305–317. DOI 10.1023/A:1009717500980 | MR 1660397
[6] Raubenheimer H., Rode S.: Cones in Banach algebras. Indag. Math. (N.S.) 7 (1996), no. 4, 489–502. DOI 10.1016/S0019-3577(97)89135-5 | MR 1620116
[7] Shakeri F., Alizadeh R.: Nonnegative and eventually positive matrices. Linear Algebra Appl. 519 (2017), 19–26. MR 3606259
Partner of
EuDML logo